Геммология – раздел науки о камнях. Минералогия как наука, связь минералогии с другими предметами

МИНЕРАЛОГИЯ

(от Минерал и...Логия

наука о природных химических соединениях - минералах, их составе, свойствах, особенностях и закономерностях физического строения (структуры), а также об условиях образования и изменения в природе. Главная задача М. - создание научных основ для поисков и оценки месторождений полезных ископаемых, их обогащения для практического использования в народном хозяйстве.

М. - одна из старейших геологических наук, по мере развития которой от неё отделяются и вырастают новые самостоятельные науки. Так, в 19 в. от М. отделились Кристаллография и Петрография, в начале 20 в. - учение о полезных ископаемых, Геохимия, а затем - Кристаллохимия. М. наиболее широко использует законы и методы современной физики и химии, во многих отношениях она находится на стыке наук геологических и физико-химических циклов. Круг вопросов, охватываемых М., сложность и разнообразие минералов, а также методов их изучения, всё расширяющаяся сфера исследований, потребности практики геологоразведочных работ и народного хозяйства исторически определили возникновение в М. различных направлений.

Основные направления. Описательная М. занимается изучением, накоплением и уточнением фактического материала, разработкой вопросов систематики; обобщением данных по морфологии, физическим свойствам минералов, их химическому составу, данных по Изоморфизму, установлением причинных связей между составом, структурой и физическими свойствами у идеальных кристаллов и реальных минералов с дефектами кристаллической решётки.Особый раздел современной описательной М. составляет физика минералов, занимающаяся их исследованием с применением методов физики твёрдого тела.

Генетическая М. выясняет условия, закономерности и процессы, приводящие к образованию определённых минеральных видов (См. Минеральный вид) и минеральных ассоциаций - месторождений полезных ископаемых (См. Месторождение полезного ископаемого); определяет количественные значения физико-химических параметров (температуры, давления, химизм минералообразующей среды), характеризующих процесс возникновения минерала и помогающих познанию способа (механизма) его образования. Генетическая М. включает: учение о типоморфизме минералов; онтогенический и кристалломорфологический анализ, дающий информацию об истории формирования минеральных индивидов и агрегатов; исследование твёрдых и газово-жидких включений как источника информации о минералообразующей среде; анализ явлений полиморфизма и политипии; методы и принципы парагенетического анализа, получение энергетических и физико-химических характеристик минералов; установление геотермометров и геобарометров - минералов, по которым можно определять термодинамические параметры образования месторождений.

Экспериментальная М. занимается моделированием природных процессов и изучением физико-химических систем с целью выяснения условий возникновения минералов в природе. К этому направлению близка новая область М. - синтез минералов (алмазов, кристаллов пьезокварца, оптического флюорита, рубинов, гранатов и др.), широко используемых в технике.

Прикладная и технико-экономическая М. разрабатывает проблемы, связанные с вовлечением в промышленное использование новых минеральных видов, с проведением минералогических исследований, направленных на более полное комплексное использование минерального сырья и повышенное извлечение его полезных компонентов; включает минералогическое картирование месторождений с целью выделения технологических сортов руд; изучение зависимости технологических свойств минералов от их состава и структуры, исследование растворимости, магнитных и других свойств, поведение минералов в процессе обогащения руд и химико-технологической переработки концентратов (например, при обжиге, воздействии кислот); рассматривает также вопросы применения минералогических критериев для поисков и оценки месторождений полезных ископаемых (например, типоморфизм минералов, законы парагенезиса и др.), разрабатывает специальные минералогические методы поисков (термолюминесценция, фотолюминесценция, радиационные и др.).

Региональная М. обобщает минералогическое изучение определённых территорий и рудных провинций для установления закономерностей распределения минералов и их ассоциаций в связи с историей геологического развития региона; входит как составная часть в общий комплекс металлогенических исследований (см. Металлогения).

М. космических тел. Развитие этого направления стало возможным только с момента получения образцов лунных пород (см. Луна), исследования которых позволили сделать первые обобщения об особенностях минералообразования на поверхности Луны и в верхних слоях лунной коры. Большое значение имеет также изучение минерального состава метеоритов.

Ни одно из указанных направлений не может плодотворно развиваться без совершенствования существующих и разработки новых методов минералогических исследований и соответствующих приборов, в том числе экспресс-методов полевой и лабораторной диагностики, а также развития прецизионных физических и аналитических методов исследования минералов.

Исторический очерк. М. возникла в глубокой древности в связи с практическими потребностями человечества, широко использовавшего камень для различных целей. Первые сведения о минеральных телах появились в трудах древнегреческих и древнеримских учёных. Аристотель и Теофраст описали свойства ряда минералов, связывая их происхождение с дымом и парами, вырывающимися из земных недр. Сведения о минералах содержатся также в «Естественной истории» Плиния Старшего (середина 1 в. н. э.). Поиски и добыча минерального сырья для выплавки металлов, а также для медицины и алхимии привели в раннем средневековье к расширению сведений о минералах и рудах. Среди исторических памятников среднеазиатских народов выделяются труды Бируни и Ибн Сины (См. Ибн Сина) (Авиценны), описавших свойства многих минералов. Развитие горного дела (6-13 вв.), прежде всего в Центральной Европе и России (добыча железа, олова, мусковита, каменной соли, янтаря, серебра и др.), привело к более тщательному исследованию руд. В 13 в. появилась специальная работа о минералах в Европе (Albertus Magnus, De Mincralibus - латинский трактат, написанный после 1262). В этот период не делали различия между минералами, горными породами и рудами, классификация их примитивна, М. была тесно связана с алхимией и металлургией. Как самостоятельная наука М. начала оформляться в эпоху Возрождения. Первое крупное обобщение по М. связано с именем Г. Агриколы (См. Агрикола), который в работе «О горном деле и металлургии» (1550) четко отделил минералы от горных пород, подробно описал физические свойства минералов, привёл первую классификацию. Термин «М.» впервые введён в 1636 итальянским учёным Бернардом Цезием (Цезиусом) из Модены. Уже в 17 в. в Дании (Э. Бартолин, Н. Стено), Голландии (Х. Гюйгенс), Англии (Р. Бойль, Р. Гук и др.) были сформулированы первые геометрические законы для кристаллов и начато изучение оптических свойств. Работа французского исследователя Роме де Лиля (1783) по гранным углам в кристаллах оказала большое влияние на развитие М. и кристаллографии, послужила основой для создания теории структур кристаллических минералов Р. Ж. Аюи, изложенной им в «Трактате о минералогии» (1801). В Германии описательно-морфологическое (физиографическое) направление в 18 в. было наиболее ярко представлено школой А. Г. Вернера. Развитие М. в России тесно связано с именем М. В. Ломоносова, который впервые высказал положение о том, что главным определяющим признаком минерала должен быть химический состав. В работах М. В. Ломоносова («Слово о рождении металлов от трясения Земли», 1757, «О слоях земных», 1763, и др.) указывается, что минералы в рудных жилах образуют естественные ассоциации, и появление одного из них служит «признаком» присутствия другого. В трудах В. М. Севергина химия как основа М. выдвигается на первый план. М. определяется как наука, изучающая состав и строение минеральных тел, их взаимоотношения в природных месторождениях и пути их практического применения. В. М. Севергиным впервые сформулировано (1798) понятие о парагенезисе («смежности минералов»). В Западной Европе химическое направление в М. стало господствующим в скандинавских странах и в Германии со 2-й половины 18 в. (шведские учёные А. Кронстедт, 1758; И. Берцелиус, 1814; немецкие минералоги А. Брейтгаупт, 1820, 1847; М. Клапрот, 1795, 1815; и др.). Детальное изучение состава и физических свойств минералов в 19 в. привело к формулировке понятий изоморфизма и Полиморфизма (немецкие химики-минералоги Э. Мичерлих, Р. Герман, позднее Г. Чермак и др.). Большую роль в развитии М. в России сыграла плеяда выдающихся минералогов (Д. И. Соколов, Н. И. Кокшаров, П. В. Еремеев и др.). За рубежом значительный вклад в становление описательной и региональной М. на рубеже 19 и 20 вв. внесли такие учёные, как П. Грот, Ф. Клокман, Ф. Ринне, Р. Брауне (Германия), Ф. Бекке (Австрия), В. Брёггер (Норвегия), А. Лакруа (Франция), Дж. Д. Дэна (США) и др. До конца 19 в. М. формировалась как описательная наука, при этом в ней развивались два основных направления - морфолого-кристаллографическое и химическое.

С конца 19 в. в связи со всё увеличивающимся спросом на различные виды сырья и усиление поисковых работ старые методы описательной М. не могли удовлетворить потребности практики. Непрерывное совершенствование методов диагностики и исследования минералов позволило глубже изучить их свойства. Главное внимание стали уделять химии и свойствам минералов, законам изоморфизма и парагенезиса. Разработкой новых методических подходов и обобщающих теорий в М. мировая наука во многом обязана русской школе В. В. Докучаева, Е. С. Фёдорова, В. И. Вернадского (См. Вернадский), А. Е. Ферсмана. Огромное влияние на развитие современной М. оказали периодический закон Д. И. Менделеева и правило фаз Дж. У. Гиббса. По Вернадскому, М. есть химия земной коры, а минералы - продукты сложных природных реакций. Минерал непрерывно взаимодействует с окружающей его средой и сам изменяется при изменении физико-химических условий. Определяя парагенезис как выражение законов совместного нахождения минералов в природных ассоциациях, Вернадский по существу заново обобщил важнейшее научное положение современной М. Одновременно в М. стало складываться кристаллохимическое направление, тесно связанное с именем Федорова, который задолго до развития рентгеноструктурного анализа математически вывел все возможные (230) пространственные группы симметрии кристаллов. Однако проникновение в атомное строение кристалла стало возможным лишь после открытия дифракции рентгеновских лучей (М. Лауэ, 1912). Проведённые У. Г. Брэггом, и У. Л. Брэггом (Великобритания), Л. Полингом (США), Г. Вульфом (Россия) и др. рентгеноструктурные исследования большинства минералов позволили рассматривать состав и строение минералов в единстве и разработать новую теорию изоморфизма (В. М. Гольдшмидт, А. Е. Ферсман), создать кристаллохимическую классификацию минералов, с новых позиций подойти к пониманию их физических свойств. В современной М. происходит синтез сё исторически сложившихся направлений - описательного и генетического, химического и кристаллографического. Изучение минералов направлено на выявление причинных связей между средой, условиями образования, составом, кристаллической структурой, физическими свойствами реального минерала со всеми его дефектами и неоднородностями. Исследования физико-химических систем и условий их равновесия, кристаллизации силикатных и сульфидных минералов при высоких температурах (русский учёный К. Д. Хрущев, швейцарский учёный П. Ниггли, американские учёные Г. Куллеруд, Н. Л. Боуэн и др.), законов кристаллизации солей из растворов (советский учёный Н. С. Курнаков, голландский учёный Я. Х. Вант-Гофф), коллоидных систем (бельгийский учёный Ф. Корню, голландский учёный Р. В. ван Беммелен и др.) создали физико-химическую основу для объяснения природных процессов образования минералов.

Новый этап развития М. в России наступил после Октябрьской революции 1917. Тесная связь с практикой горного дела, плановость в организации и осуществлении научных исследований определили быстрое развитие М. Были организованы новые научные минералогические центры и обширные регионально-минералогические работы по всей территории СССР под руководством А. Д. Архангельского (См. Архангельский), А. Е. Ферсмана, Н. М. Федоровского (См. Федоровский), С. С. Смирнова, Н. А. Смольянинова и многих др. Было открыто и освоено множество месторождений и горнорудных районов (Кольский полуостров, Якутия, С.-В. СССР, Кавказ, Средняя Азия и др.). Полученные при этом научные материалы послужили основой для развития теоретических обобщений по М. и геохимии, внедрения в практику методов изучения и обогащения рудного сырья, были освоены новые виды полезных ископаемых (нефелин, апатит, лопарит, пирохлор, кианит, фенакит, бертрандит и др.), новые области использования минералов. Изучение термохимии и термодинамики природных процессов позволило выработать минералогические критерии для характеристики глубинных процессов, определения глубин и температурных условий процессов метаморфизма минералов, руд и горных пород (А. Е. Ферсман, Д. С. Коржинский и др.). Были показаны пути и возможности применения физико-химического анализа и эксперимента параллельно с геологическими наблюдениями для выяснения законов совместного образования минералов в геологических телах различного генезиса (А. Е. Ферсман, С. С. Смирнов, В. И. Смирнов, А. Г. Бетехтин, В. А. Николаев и др.), для выявления условий образования минералов в глубинах Земли при изменяющихся температурах, давлениях и концентрациях химических компонентов. Развитие учения о парагенезисе привело советских минералогов (А. Е. Ферсман, С. С. Смирнов, К. А. Власов, Ф. В. Чухров, И. И. Гинзбург и др.) к важным теоретическим обобщениям. К ним относятся: теория генезиса пегматитов (См. Пегматиты) и близких к ним образований, законы формирования зоны окисления рудных месторождений, изучение условий образования месторождений железа, никеля и др. минералов в современной коре выветривания. Известны работы советских учёных Я. В. Самойлова, В. И. Вернадского, Ф. В. Чухрова и др., посвященные роли живых организмов и коллоидных растворов в образовании минералов (руды марганца, железа, самородная сера и др.). Развитие понятия о типоморфизме минералов получило своё выражение в идеях о причинной связи и зависимости внешнего облика кристаллов, их агрегатов, химического состава и структурных особенностей минералов от условий их образования в той или иной геологической среде. На минеральных индивидах и агрегатах, в морфологии, в характерных проявлениях типоморфизма и в генетических признаках записана история зарождения, роста и изменения минералов и заключающих их месторождений (Г. Г. Леммлейн, Д. П. Григорьев, И. И. Шафрановский и др.). Обобщение результатов, полученных при изучении газово-жидких и многофазовых включений (См. Включения) в минералах, позволило приблизиться к решению вопросов о характере, составе и термодинамических параметрах среды образования многих минералов в различных месторождениях (Н. П. Ермаков, Ю. А. Долгов и др.). Вскрывая связи между средой, условиями образования, составом, структурой и свойствами минералов, советские минералоги достигли существенных результатов в изучении реальной химической конституции и структуры кристаллических минералов, а также в установлении корреляционных связей между составом минералов, свойствами слагающих их атомов и ионов, кристаллохимической структурой и основными их физическими свойствами (Н. В. Белов, А. Е. Ферсман, В. С. Соболев, А. С. Поваренных, Е. К. Лазаренко и др.). Важные результаты получены советскими учёными при изучении минералов класса силикатов, сульфидов и их аналогов (Н. В. Белов, В. С. Соболев и др.), боратов, самородных элементов, кварца и других групп, минералов редких и редкоземельных элементов (Г. П. Барсанов, Е. И. Семенов, В. И. Герасимовский, А. И. Гинзбург и др.). Требования практики, использующей специальные свойства кристаллов (пьезоэлектрические, сегнетоэлектрические, полупроводниковые, двупреломляющие, «лазерные», вообще оптические и др.), определили развитие работ в направлении точного и всестороннего изучения физических свойств и влияния структурных особенностей реальных минералов (политипия, дислокация, дефекты в кристаллах, электронно-дырочные центры и др.) на изменение их физических свойств (А. С. Марфунин, Б. Б. Звягин и др.). Создана в содружестве с кристаллографами и физиками самостоятельная научная отрасль по синтезу кристаллов.

Основные организации и периодическая печать. Исследования в области М. в СССР ведутся институтами АН СССР, управлениями и ведомствами министерств геологии СССР и союзных республик, учебными и научно-исследовательскими институтами. Большую работу по пропаганде и внедрению достижений М. проводят минералогические общества, имеющиеся в СССР (см. Минералогическое общество) и за рубежом (во Франции, ГДР и ФРГ, в скандинавских странах, Италии, Швейцарии, Испании, Великобритании, США, Индии, Бразилии). Они объединены в Международную минералогическую ассоциацию (ММА), на съездах которой (через каждые 4 года) обсуждаются важнейшие проблемы М. Значительная роль в развитии М. и пропаганде минералогических знаний принадлежит также минералогическим музеям. Крупнейший из них - Минералогический музей им. А. Е. Ферсмана АН СССР. Обширные минералогические коллекции имеются в Ленинградском горном институте, в МГУ, Московском геологоразведочном институте, в институтах в Свердловске, Иркутске, Киеве, Львове, Алма-Ате и др. городах СССР, а также за рубежом - во Фрейберге (ГДР), Карлсруэ (ФРГ), Париже, Лондоне, Праге, в Вашингтоне и Нью-Йорке.

Основные периодические издания по М.: в СССР - «Записки Всесоюзного Минералогического общества» (с 1866), «Минералогический сборник» Львовского университета (с 1947), «Труды Минералогического музея» АН СССР (с 1949); за рубежом - «American Mineralogist» (Lancaster - Wash., с 1916), «Bulletin de la Société française de Minéralogique (et de Cristallographie)» (P., с 1878), «Bulletin Suisse de Minéralogie et de Pétrographie» (Bern - Z., с 1921), «Mineralogical Magazine» (L., с 1876), «Zentralblatt für Mineralogie» (Stuttg., с 1950), «Zeitschrift für Kristallographie» (Lpz., с 1877), «Acta Crystallographica» (Camb. - Cph., с 1948), «Neues Jahrbuch für Mineralogie. Abhandlungen» (Stuttg., с 1807), «Neues Jahrbuch für Mineralogie. Monatshefte» (Stuttg., с 1900), «Contributions to Mineralogy and Petrology» (Hdib. - B., с 1947), «Schweizerische Mineralogische und petrographische Mitteilungen» (Z., с 1921), «Tschermarks mineralogische und petrographische Mitteilungen» (Vienna - N. Y., с 1872).

Лит.: Ломоносов М. В., О слоях земных и другие работы по геологии, М. - Л., 1949; Вернадский В. И., Избр. соч., т. 2-3 - Опыт описательной минералогии, М., 1955-59; Григорьев Д. П., Шафрановский И. И., Выдающиеся русские минералоги, М. - Л., 1949; Григорьев Д. П., Онтогения минералов, Львов, 1961; Поваренных А, С., Кристаллохимическая классификация минеральных видов, К., 1966; Барсанов Г. П., Минералогия, в кн.: Развитие наук о Земле в СССР, М., 1967; Бетехтин А. Г., Курс минералогии, 3 изд., М., 1961; Лазаренко Е. К., Курс минералогии, М., 1971; Костов И., Минералогия, [пер. с англ.], М., 1971; Сидоренко А. В., Лазаренко Е. К., Состояние и задачи современной минералогии, «Зап. Всесоюзного Минералогического общества», 1972, ч. 101, в. 2; Белов Н. В., Очерки структурной минералогии, в. 1-24, «Минералогический сборник», 1950-73, № 4-27.

Г. П. Барсанов, А. И. Гинзбург.



, жидкости и газы , т.е. все неживые естественные тела. Затем из минералогии были выделены окаменелости (они стали объектом палеонтологии), горные породы (они стали объектом петрографии), нефть, газ, уголь (они стали объектами геологии нефти и газа и твердых полезных ископаемых).

В настоящее время под минералами понимают природные химические соединения, образовавшиеся в результате физико-химических процессов и являющиеся составными частями горных пород и руд. С химической точки зрения минерал - более или менее однородное тело, отвечающее определенному составу. В основном, это твердые, кристаллические (98%) образования, реже - аморфные (некристаллические), жидкие (вода, ртуть), газообразные (метан, оксид серы, диоксид углерода).

Кристаллические минералы имеют широкое распространение. Внутренняя структура этих минералов выражается кристаллической решеткой, которая обусловливает форму кристаллов, физические, оптические и другие свойства минералов. Кристаллы нередко имеют идеально выраженную форму в виде многогранников (призмы, пирамиды, куба и др.).

Аморфные минералы не обладают какой-либо закономерностью внутреннего строения. В земной коре они расположены незначительно, являются неустойчивыми и могут переходить в кристаллическое состояния. Для этого необходимо длительное выдерживание их при температуре, близкой к точке плавления. Аморфные вещества (опал, кремень) характеризуются изотропными свойствами и непостоянством состава. Образуются обычно при быстром охлаждении расплавленных вязких масс или при выпадении из растворов.

Облик кристаллов минерала зависит от его внутреннего строения и условий образования. Существуют изометрические формы минералов: кубы пирата и галита, октаэдр магнетита; вытянутые в одном направлении: призматические, столбчатые, игольчатые; вытянутые в двух направлениях: таблитчатые, пластинчатые, листовые (полевые шпаты, гипс, слюда). Многие минералы обладают сходным обликом кристаллов, например, кристаллы кальцита и доломита - ромбоэдрические, пирита и галита - кубические, полевого шпата и гипса - таблитчатые или пластинчатые.

Одиночные кристаллы образуются при медленном охлаждении и кристаллизации магматического расплава в условиях свободного роста в пространстве. Они представляют собой геометрически правильные многогранники (например, кристалл горного хрусталя).

Формы природных выделений минералов. Друза (щетка) - совокупность кристаллов, наросших на какую либо поверхность своими основаниями. Вершины кристаллов, обращенных в сторону пустого пространства, обычно хорошо ограничены. Друзы характерны для кварца, кальцита, пирита и др.

Агрегат - совокупность компактно сросшихся кристаллов и кристаллических зерен. В минеральных агрегатах иногда наблюдается упорядоченное расположение кристаллов с образованием лучистых, игольчатых, жилковатых, волокнистых, пластинчатых, зернистых структур.

Натечные формы характерны для коллоидных минеральных образований, имеют вид корочек, почек, сосулек (сталактиты и сталагмиты) и для таких минералов как кальцит, лимонит, халцедон, гипс. Натеки возникают в пещерах или пустотах из просачивающихся вод, а также образуются гейзерами и источниками, имеющими в растворе избыток углекислого кальция (известковый туф).

Псевдоморфоза - ложная, необычная форма кристалла, не соответствующая его внутренней структуре. Образуется в результате замещения одного материала другим с сохранением внешней формы замещенного кристалла при обменных реакциях (например, псевдо-морфоза лимонита по кубическому кристаллу пирита) или при последующем заполнения пустот, возникающие после выщелачивания минералов.

В настоящие время известно более 7000 минералов, но только 100 из них относятся к породообразующим и около 30 широко распространенными (основными) .

Основные породообразующие минералы наиболее распространены в горных породах и определяют их вещественный состав. Например, для гранитов породообразующими минералами являются полевые шпаты (ортоклаз, реже - плагиоклаз), кварц и слюды; в диоритах преобладает средний плагиоклаз (андезин), слюды и роговая обманка, в меньшей мере - кварц; в габбро распространены основной плагиоклаз, роговая обманка, пироксен.

Для осадочных глинистых пород и пород биохимического происхождения характерны каолинит, монтмориллонит, доломит, гипс, ангидрит, кальцит, галит и др. В песчаных породах широко распространены обломки кварца, полевых шпатов, иногда глинистые минералы. Для метаморфических пород главным породообразующими минералами частично являются перечисленные выше минералы плюс типично метаморфические: змеевик, тальк, асбест и др

Основные диагностические свойства минералов. К основным свойствам минералов относятся: цвет, блеск, прозрачность, спайность, твердость, реакция с НСl.

Цвет минерала - это его окраска в образце. Он зависит от его структурных особенностей и химического состава и является постоянным (так называемый собственный цвет). Ложный цвет минерала обусловлен механическими примесями красящих элементов, а также световым воз- действием. Цвет следует наблюдать на свежем изломе.

Цвет черты - цвет минералов в тонком порошке, служит одним из диагностических признаков для определения минералов и горных пород. Многие минералы в порошкообразном состоянии имеют другой цвет, чем цвет в куске. Обычно для определения цвета минерала в порошке проводят кусочком минерала черту на белой шероховатой поверхности неглазурированного фарфора (его иногда называют «бисквит»). Этот метод диагностики весьма важен. Например, цвет черты соломенно-желтого пирита - черный, черного гематита - вишнево-красный, а черного магнетита - черный. В случае, если твердость минерала выше, чем твердость фарфоровой пластинки, то минерал не дает черты, а образует на фарфоре царапину.

Прозрачность минерала - это способность пропускать сквозь себя свет. Многие минералы, кажущиеся в больших кристаллах непрозрачными, в тонких осколках, шлифах просвечивают (например, биотит - черная слюда). Поэтому прозрачность минерала определяют в тонких пластинках.

В зависимости от степени прозрачности все минералы подразделяются на следующие группы:

1. прозрачные (наблюдаемый сквозь пластинку предмет ясно различим) - горный хрусталь, исландский шпат, мусковит;



2. полупрозрачные (предмет виден слабо) - галит, кварц;

3. непрозрачные (не пропускают света, пред- мет не виден) - все рудные минералы: пирит, магнетит, роговая обманка и др.

Блеск - это способность минерала отражать свет, падающий на его поверхность. Блеск за- висит от показателя преломления минерала, характера отражающей поверхности, трещиноватости, посторонних включений и т.п. Различают минералы с неметаллическим и металлическим блеском. В группе минералов с неметаллическим блеском выделяются оттенки блеска: стеклянный (кварц, карбонат); алмазный (алмаз, самородная сера); жирный (кварц с неровным изломом); шелковистый (волокнистый гипс, ас- бест); перламутровый (мусковит, тальк, пластичный гипс); матовый и восковой (доломит, лимонит); полуметаллический (гематит).

Спайность - способность минерала раскалываться или расщепляться с образованием правильных зеркальных поверхностей по определенным кристаллографическим направлениям. Такие поверхности называются плоскостями спайности. Спайность различается по степени ее совершенства:

а) весьма совершенная - минерал легко расщепляется на тонкие листочки-волокна в одном направлении (слюда, гипс, асбест);

б) совершенная - минерал раскалывается на геометрически правильные осколки, внешне на- поминающие настоящие кристаллы (галит);

в) средняя - при раскалывании минерала образуются гладкие поверхности спайности, а также неровные изломы по случайным направлениям (полевые шпаты, роговая обманка, оливин);

г) несовершенная - преобладают поверхности излома, а плоскости спайности обнаруживаются с трудом (апатит, сера);

д) весьма несовершенная - спайность практически отсутствует, минерал раскалывается с образованием поверхности излома (кварц, га- лит, магнетит и др.).

Излом - поверхность раскола, прошедшая в минерале (не по спайности). По характеру поверхности раскола различают несколько видов излома:

а) ступенчатый - у кристаллов с совершенной и средней спайностью (полевой шпат);

б) занозистый - у минералов волокнистого сложения (роговая обманка, асбест);

в) неровный - имеет неровную поверхность (шероховатую) и характерен для минералов с несовершенной спайностью (апатит, кварц);

г) раковистый - поверхность излома напоминает раковину, наблюдается у минералов без спайности (опал, халцедон, кварц);

д) землистый - характерен для глинистых минералов (каолинит).

Твердость - сопротивление минерала механическому воздействию при царапании пред- метами эталонной твердости (относительная твердость). В практике обычно определяют относительную твердость образцов по специальной таблице (табл. 2), а также легкодоступными предметами, твердость которых известна (на- пример, ноготь пальца - 2,5; медная монета - 3; стальной нож и стекло - 5,5-6).

Различают пассивную и активную твердость. Первая определяется способностью минерала воспринимать царапанье, вторая - его способностью царапать Магнитность свойственна минералам, содержащим железо. Наиболее магнитным является магнетит.

Реакция 10%-ным раствором соляной кислоты применяется для выявления карбонатных солей в минералах. Бурно реагирует («вскипает») под воздействием холодной HCl кальцит; доломит «вскипает» медленно, но в порошке, а также при нагретой HCl, он реагирует более интенсивно.


Вкус определяется для минеральных солей, хорошо растворимых в воде. Так, минерал сильвин (KCl) имеет горько-соленый вкус, а галит (каменная соль NaCl) - соленый.

Классификация минералов. Минералы классифицируются по химическому составу и кристалло-графическим особенностям, оптическим свойствам и др.Химическая классификация основана на со- отношении химических элементов в составе минералов, что находит отражение в их химических формулах.Выделяют 8 классов минералов. Различают следующие классы:

1. Самородные
2. Сульфиды
3. Сульфаты
4. Оксиды и гидрооксиды
5. Галоиды
6. Карбонаты
7. Фосфаты
8. Силикаты

Описание минералов

Самородные элементы (минералы). Это класс минералов, состоящих их одного химического элемента, и называемых по этому элементу. К ним относятся: золото, серебро, медь, платина, алмаз, графит, сера, и другие. Все они подразделяются на две группы: металлы и неметаллы. В первую группу входят самородные Au, Ag, Cu, Pt, Fe и некоторые другие, во вторую - As, Bi, S, С (алмаз и графит).

Медь . Химическая формула минерала - Сu. Цвет - красный, часто с бурой и пестрой побежалостью. Блеск - металлический. Твердость - 2,5-3. Излом - крючковатый. Самородная медь встречается очень редко. Чаще всего - в виде дендритовых или нитевидных форм. Кроме этого встречаются образования в виде пластин и порошковатых скоплений. Медь встречается в базальтовых лавах, песчаниках, конгломератах, в гидротермальных жилах и пластовых залежах совместно с халькозином, купритом, малахитом. Применение: электротехника, машиностроение, судостроение.

Фото1. Медь. Место отбора образца: Джезказган, Казахстан (№ образца 59, № полки 8)

Графит . Химическая формула минерала - С. Твердость - 1-2. Цвет - тёмно-серый. Блеск - металлический. Жирный (скользкий) на ощупь. При трении расслаивается на отдельные чешуйки (это свойство используется в карандашах). Образуется при высокой температуре в вулканических и магматических горных по- родах, в пегматитах и скарнах. Встречается в кварцевых жилах с вольфрамитом и другими минералами в среднетемпературных гидротермальных полиметаллических месторождениях. Широко распространен в метаморфических породах - кристаллических сланцах, гнейсах, мраморах.

Применение:
- для получения химически активных металлов методом электролиза расплавленных соединений;
- для приготовления твёрдых смазочных материалов, в комбинированных жидких и пастообразных смазках;
- замедлитель нейтронов в ядерных реакторах; - компонент состава для изготовления стержней для чёрных графитовых карандашей (в смеси с каолином);
- для изготовления контактных щёток и токосъёмников для разнообразных электрических машин;
- как токопроводящий компонент высокоомных токопроводящих клеёв.

Фото 2. Графит. Место отбора образца: Красноярский край, Россия (№ образца 35, № полки 5)

Сера . Химическая формула минерала - S. Цвет самородной серы различен (от посторонних примесей селена, сернистого мышьяка, органических веществ) - медово-желтый, серно-желтый, серый и бурый. Блеск - жирный, приближающийся к алмазному. Излом - раковистый. Твердость - 1,5-2,5.

Самородная сера образуется в природе различными путями. Наибольшие количества происходят водным путем из источников и вообще вод, циркулирующих в недрах земной коры, содержащих сероводород. Последний при доступе кислорода воздуха окисляется, образуя воду и выделяя серу. Второй способ образования серы - вулканический. Она отлагается по стенкам кратера вулканов или вследствие непосредственной возгонки, или вследствие взаимодействия сероводорода и сернистого ангидрида, нахождение которых весьма обычно в продуктах вулканической деятельности.

Сера нередко встречается в самородном виде, образуя плотные или землистые массы или же кристаллические агрегаты в виде кристаллических друз, пленок и налетов. Находятся также и хорошо образованные кристаллы, достигающие значительных размеров. Применение: в резиновой, химической промышленности, в медицине, в электротехнике, для отбеливания тканей.

Фото 3. Сера. Место отбора образца - Водинское месторождение, Самарская область, Россия (№ образца 83, № полки 11)

Сихотэ-алинский метеорит. Химическая формула минерала - Fe+Ni- железистый метеорит, общая масса осколков оценивается в 60-100 тонн. Упал в Уссурийской тайге в горах Сихотэ-Алинь на Дальнем Востоке 12 февраля 1947 г. Он раздробился в атмосфере и выпал железным дождем на площади 35 квадратных километров. Отдельные части дождя рассеялись по тайге на площади в виде эллипса с большою осью длиной около 10 километров. По химическим анализам, Сихотэ-алинский метеорит состоит из 94 % железа, 5,5 % никеля, 0,38 % кобальта и небольших количеств углерода, хлора, фосфора и серы.

Фото 4. Сихотэ-алинский метеорит. Место отбора образца: Приморский край (№ образца 60, № полки 7)

Минералогия - это наука о минералах и природных химических соединениях. Минералогия занимается изучением состава, свойств, структуры и условий образования минералов. Это одна из древнейших геологических наук.

Турмалин (с сингал. තුරමලි «турамали» — драгоценный камень) — представитель группы минералов из класса алюмосиликатов переменного состава, содержащих в составе бор. Обобщенная химическая формула минерала выглядит примерно: R1+R2+3Al6Si6O18(BO3)3(OH)4. R1+ — ионы натрия или лития; R2+ — ионы Mg, Fe, Mn.

Гранат — не существует минерала с таким названием. Гранатами называют целую группу минералов из класса силикатов. Название произошло из-за весьма большого сходства сростков кристаллов (щеток) с зернами фрукта граната. Общая химическая формула: R2+3R3+2(SiO4)3, где 2-хвалентным радикалом могут выступать Mg, Mn, Fe, Ca. Чаще всего 3-хвалентный радикал это Al, но иногда вместо него в минерале содержатся Fe …

Рубрика:

Ставролит (с греч. σταυρός - крест, λίθος - камень) — минерал семейства силикатов: островной силикат железа и алюминия. Камень назван в 1792 году французом Ж. К. Деламетри из-за крестообразной формы кристаллов минерала. Химическая формула: Fe(OH)2(Al2SiO5)2.

Рубрика:

Каолинит (от названия местности Каолин в Китае, где был впервые найден) – глинистый минерал из класса водных силикатов. Химическая формула: Al2(ОН)4.

Рубрика:

Серпентин (с лат. serpens - змея) – минерал из класса водных силикатов. Синоним: змеевик. Химическая формула: Mg3(OH)4.

Рубрика:

Тальк – минерал из класса водных алюмосиликатов, группа талька. Химическая формула: Mg3(0H)2.

Рубрика:

Биотит (в честь франц. химика Жана Батиста Био) – породообразующий минерал из класса водных алюмосиликатов, группа слюд. Химическая формула: К(Mg,Fe)3(ОН,F)2.

Рубрика:

Мусковит – минерал из класса водных алюмосиликатов, группа слюд. Химическая формула: KAl2(ОН,F)2.

МИНЕРАЛОГИЯ (от лат. minera-кусок руды, горный штуф и греческого logos-учение. слово), наука о минералах, об их хим. составе, физ. свойствах, условиях образования в природе, изменениях и превращениях в связи с изменением этих условий. Минералы-твердые, жидкие и газообразные природные тела. Состав их выражается химич. формулой. По физич. строению они часто представляют собой кристаллические вещества и иногда находятся в виде кристаллов. Геометрические и физ. свойства таких веществ изучает кристаллография (наука о кристаллах), кристаллооптика и др. отделы физики. Минералы имеют значение в качестве полезных ископаемых. Из них выплавляют миллионы тонн разных металлов. Основная хим. промышленность получает из минералов десятки миллионов тонн солей и других хим. продуктов. Минералы употребляются в медицине в редких случаях непосредственно (например минералы из группы солей), а гл. образ.- как продукты их переработки. К таким минералам относятся следующие. Сера самородная; серный цвет, получаемый возгонкой самородной серы; он имеет применение в ветеринарии. Висмут самородный и висмутовый блеск служат основанием для получения препаратов висмута, особенно белого висмута, широко распространенного лекарственного средства. Реальгар и аур и пигмент (сернистые соли мышьяка) являются исходным сырьем для мышьяковых препаратов. К и-и о в а р ь (сернистая ртуть) является источником ртутных соединений. Марганцовокислый калий получают из пиролюзита (окисел марганца). Белая магнезия и др. магнезиальные соли получают из минерала магнезита или же из рапы соляных озер, лиманов, где магний находится в виде хлористого магния и легко извлекается. Бура, борная к-т а получаются из природных соединений аналогичного состава, находящихся в озерах, связанных с вулканической деятельностью. Глауберов а соль встречается в больших количествах. в озерах и морских лагунах. Кроме того необходимо еще отметить мягкий минерал- тал ь к, порошок к-рого известен в медицине под названием тальковой пудры.-Р ад и е-в ы е препараты получают в СССР из минерала тюя-мунит, находящегося в Туркестане и представляющего собой урано-ванадат. Известные месторождения в Чехо-Словакии представляют собой залежи урановой смолки, являющейся главным образом окисью урана. Сравнительно немногие минералы используются непосредственно в том виде, как они добываются из земли--корунд, алмаз, асбест, слюда, графит и др. Большая часть ископаемых подвергается коренной переработке прежде чем найти себе применение в науке или технике. Практическое значение М. заключается в том, что, изучая свойства минералов, она приводит к открытию новых полезных ископаемых и к наилучшему использованию уже известных. Изучая же условия образования минералов в природе, М. помогает обнаружению новых месторождений полезных ископаемых и выяснению их промышленного значения. М. долгое время представляла собой описательную науку. Ее целью было описание внешней формы и свойств, хим. состава 1 и места нахождения минералов. Успехи геологии в 18 веке и химии в начале 19 века отразились на М.; появился взгляд на нее как на химию земной коры (Берцелиус); стали обращать больше внимания на условия за легация минералов в природе (Вернер), а также их совместное нахождение, парагенезис (Кроыштедт, Брейтгаупт), но дальнейшего развития это течение не получило и замерло на несколько десятков лет. В первой половине 19 в. М. характеризуется гл. обр. двумя направлениями - кристаллографическим и химико-аналитическим. Благодаря открытию аббатом Гаюи (Наиу) геометрического закона кристаллографии (закон параметров) в М. появился исключительный интерес к вопросам формальной кристаллографии. Минералы стали подвергаться тщательному измерению для установления кристаллографических форм. Успехи аналитической химии вызвали столь же формальный интерес к хим. составу минералов со стороны видных химиков. В новую эру М. вступила во второй половине 19 в. Развитие горного дела (особенно в Америке) и усиление интереса к нему и были причинами сказавшегося в М. стремления перенести вопросы минералогического исследования в обстановку полевых наблюдений. Современная М. сохранила интерес к отдельным минералам и продолжает всестороннее их изучение, но кроме того изучает и самые процессы их образования. Минералы теперь понимаются как продукты природных реакций. М. стремится предвидеть появление минералов из рассмотрения данной совокупности явлений и, наоборот, из наблюдения минералов в природе установить самый процесс. Особое значение вновь получили парагенезис, возрастные соотношения между минералами, изменение состава их в зависимости от формы выделения в природе, характер разрушения минералов и т. д. Не удовлетворяясь вопросами происхождения минералов, М. углубляет свои задачи в сторону геохимии, т. е. изучает законы распределения хим. элементов в земной коре, причины совместного нахождения элементов и их группировок, рассеяния и концентрации. В России задачи М. широко понимались уже М. В. Ломоносовым. В середине 19 в. господствовавшее в М. кристаллографическое направление было представлено Кокшаро-вым, а вопросы анализа минералов разрешались крупнейшими аналитиками Германом, Гадолином и др. М. с современным пониманием ее задач зародилась в России при Московском ун-те в 90-х годах. Родоначальником ее следует считать В. И. Вернадского, создавшего здесь крупную школу минералогов геохим. направления. В работах самого В. И. Вернадского особое место занимает роль биохим. процесса в поверхностной зоне земной коры. Выдающимся представителем этого течения был Я. В. Самойлов, установивший понятие биолита, под которым он разумел всякий минерал, связанный в происхождении с жизнедеятельностью организмов. За последние годы интенсивных работ поискового и разведочного характера заметен повышенный интерес в СССР к М., особенно в части вопросов генезиса полезных ископаемых и геохимии. Изучение вопросов генезиса минералов выдвинуто главным образом Н. М. Федоровским. Представителем геохимического направления является А. Е. Ферсман. В своем содержании М. разделяется на 2 части-генетическую и описательную М. В кратком обзоре данные генетической М. представляются в следующем виде. Явления минералообразования изучаются в пределах поверхностной зоны земной коры на глубину 16 км. Изучаемая область включает нижние слои атмосферы (их мощность не вошла в приведенную цифру). Петрографический состав литосферы: изверженные породы 95%, сланцы 4%, песчаники 0,75% и известняки 0,25%. Валовой хим. состав всей земной коры на указанную глубину, считая и атмосферу, следующий (в %): о. Si , А1 , Fe Mg 49,20 , 25,67 . 7,50 . 4,71 . 1,93 Са Na . 3,39 .0,11 . 2,63 .2,40 .0,87 Ti . . . С... С1 . . . Остальн. 0,58 0,08 ,0,19 0,74 На приложенном схематическом разрезе представлены различные термодинамические зоны земной коры (рисунок 1). I. Поверхностная зона выветривания. Характеризуется малым давлением и t°. Хим. реакции протекают при участии водных растворов, О, CO s и жизнедеятельности организмов.-II. Зона глубинного выветривания. Несколько повышенные t° и давление. Реакции идут в водных растворах при участии гл. обр. угольной к-ты.-III. Зона цементации. Еще более высокие давление и t°. Выделение минералов преобладает над растворением.-IIIj. Зона диагенеза представляет особые условия, при к-рых происходит фсрмирование твердой осадочной породы из обломочного материала под слоем морской воды.-IV. Зона кристаллических сланцев. Характеризуется высокими давлением и t°,отсутствием свободного О и воды. Кремнезем вытесняет в условиях этой зоны угольную к-ту из ее соединений. Минералы создаются способом перекристаллизации других минералов, неустойчивых в этой зоне.-V. Зона магмы. Область расплавленного вещества при высоких давлении и t°, сложного силикатового состава. Образование изверженных горных пород.-V,. Область образования минералов в трещинах породы за счет веществ, выделяющихся при застывании магмы. Пегматитовые жилы особого генезиса и минералогического состава. Рудные жилы.- V,. Образование контактовых областей. Взаимодействие магмы с чуждыми ей породами. Изучение вопроса о распределении хим. элементов в земной коре приводит к заключению, что наиболее глубокие части магмы богаты железом, хромом и магнием,-им Н,0+0+СО г Биосфера b=v- зй ^^ н,о+со 5 Зоны выветривания Ш + Н,0 / /Я? Mi \ Зона цементации ill / У М=I Область \ "* / /,^=? (копгактного \ / ^^^~ \метаморфизма \ IV Зона w анаморфизма -С0 г V Щ -R.0 ♦SiO, МАГМА ^ = ^ = ~*^-=»а^ Рисунок 1. Схема термодинамических зон земной коры. отвечают основные изверженные горные породы. Краевые участки магмы, напротив, богаты кремнеземом и щелочами и бедны железом, магнием, а отчасти и кальцием. Соответствующие породы-кислые, типа гранита. Рисунок 2 дает представление о зональном распределении хим. элементов в вертикальном сечении в связи с интрузиями, вторжениями гранита. Знаки хим. элементов на чертеже указывают на нахождение в данном пункте условий, благоприятствующих образованию соответственных минералов. Т. о. обособливаются минералы магматические-содержат Zr, Та, Nb и др.; контактовые-содержат Fe, Cu, Ti; жильные, глубоких горизонтов-содержат Sn, W, Mo, средних горизонтов-Си, Pb, Zn и верхних-содержат Sb, As, Hg. Все вообще минералы устойчивы в условиях их образования, с изменением к-рых они подвергаются превращению, разложению, изменению. Большое значение в М. имеют циклические процессы, когда минералы после ряда изменений могут регенерироваться за счет продуктов их же разрушения. Описательная М. рассматривает минералы в порядке какой-либо классификации. Наибольшим признанием пользуется хим. :S85 классификация америк. минералога Дана. В ней минералы распределяются по хим. ■составу на следующие группы: самородные элементы, сернистые соединения, галоиды (соединения металлов с Cl, Br, F), окислы, карбонаты (соли угольной к-ты), силикаты, фосфаты, сульфаты и некоторые др. В генетической классификации минералы " «объединяются в группы по сходству условий генезиса; таковы например минералы, получающиеся при усы-хании морских бассейнов, - поварен, соль, гипс, калиевые ■соли и др. Другим примером может служить группа био-.литов - фосфорит, болотная железная руда (жизнедеяте-.льность Lepitothrix ochracea), селитра (некоторые случаи), -серный колчедан (некоторые случаи), кальцит кораллов <(СаС0 3) и т. д. В описательн. минералогии изучаются свойства физ. и хим. минералов. Нек-рые из свойств представляют большой интерес и яв-.ляются причиной практического использования минералов (твердость алмаза и корунда, графит, слюда и др.). Кроме того в ней отмечаются условия генезиса, спутники, продукты распада, месторождения, практическое применение минералов и др.-Общее число минералов около 1 000, а считая разновидности-около 3 000. Каждый год открывается около 50 новых минералов (с разновидностями). Наряду с чрезвычайно распространенными минералами, например кварцем (около 12% от веса литосферы) и долевыми шпатами (около 57%), находятся и очень редкие, известные всего в нескольких экземплярах. Также и в практическом ■ отношении кроме минералов большого значения известны минералы, не имеющие пока применения. В своих исследованиях М. пользуется по-. левыми наблюдениями и данными и методами наук: геологии, физики, химии в широком понимании этого слова-аналитической, физической, коллоидной и даже биохимии.Кристаллография в современной М. имеет подсобное значение. По существу кристаллография, понимаемая теперь как физика твердого вещества, отошла к физике. В постановке новых, чисто физ.-химич. вопросов, отделивших кристаллографию от минералогии, сыграли роль два крупных русских ученых-Е. С. Федоров и Г. В. Вульф. Большое значение приобрел открытый в середине 19 в. оптический метод исследования минералов в шлифах под микроскопом в поляризованном свете при изучении горных пород и недавно получивший развитие метод исследования в отраженном свете при " исследовании руд. Широко применяются методы механического и термического анализов. Первые состоят в разделении минералов при помощи тяжелых жидкостей, отмучивания, магнитной сепарации, флотации и т. д., вторые-в наблюдении и изучении происходящих в минерале изме-нений^ при нагревании его до высоких t°. Для этого пользуются самопишущими приборами, дающими возможность регистрировать ход изменений в виде непрерывной кривой. Все большее значение приобретают вопросы и методы искусственного воспроизведения минералов в лаборатории для уяснения природных условий генезиса. С той же целью изучаются условия равновесия раз- личных искусственных физ.-хим. систем. Данные наблюдений и здесь обычно представляются в виде диаграмм и кривых. Преподавание М. в прежнее время было поставлено при ун-тах и горных вузах, где имелись кафедры минералогии и минералогические институты. С реформой высшей школы преподавание М. сосредоточилось в горных втузах и техникумах. Метод преподавания активный. Для студентов обязательна половая и производственная практика на горных предприятиях и в геолого-разведочных партиях. Соответствующие учебные и научные учреждения в СССР строятся по принципу комбинатов. По такому плану построен например Геолого-разведочный комбинат при Главном геолого-разведочном управлении ВСНХ. В него влились минералогические ин-ты и кафедры М. быв. Московского ун-та и Моск. горной академии. В ГРК входят рабфак, геолого-разведочный техникум, геолого-разведочный ин-т и научно исслед. ин-т. Кроме того существуют минералогические ин-ты при производственных и промышленных предприятиях (объединениях). Задача их состоит в научной помощи предприятиям. Работа в исследовательских институтах строится по принципу комплексного метода с тем, чтобы в результате всестороннего исследования полезных ископаемых указать способы наилучшего их использования, а в части вопросов генезиса получить данные для наиболее рациональной постановки разведочной и эксплоа-тационной работы. Наиболее крупными исследовательскими институтами М. являются Институт прикладной минералогии и Гос.

Рисунок 2. Идеальный разрез через земную кору в области гранитных магм и связанных с ними геохимических процессов.

Ин-т цветных металлов в Москве. При Ком-академии в Москве имеется Институт генезиса минералов и горных пород, а при нем синтетическая лаборатория по производству опытов искусственного получения минералов. Научные минералогические вопросы широко ставятся и глубоко прорабатываются при Минералогическом музее Академии наук. В СССР существует научное минералогическое общество, основанное в 1830 г., имеющее свой орган («Записки Российского минералогического об-ва», М., с 1870). Лит.: Болдырев А., Курс описательной минералогии, вып. 1-2, Л., 1926-28; Вернадский В., Минералогия, вып. 1-2, М., 1910-1912; о н ж е, История минералов земной коры, т. I, вып. 1-2, Л., 1925-1927; о н ж е, Очерки геохимии, М.-Л., 1927; Нерудные ископаемые, изд. Академии наук СССР. т. I-V, Л., 1926-29; Федоровский Н., Курс минералогии, М.,1930; о н ж е, Минералы в промышленности и сельском хозяйстве, Л., 1927; Ферсман А., Химические элементы земли и космоса, П., 1923; N i g g 1 i P., Lehrbuch der Mineralogie, В., 1924-26. См. также лит. к ст. Кристаллы. Н. Смольягогаов. МИНЕРАЛЬНЫЕ ИСТОЧНИКИ. Источники называются минеральными, если вода их отличается от обычной воды источников или колодцев 1) более высоким содержанием растворенных веществ, или 2) содержанием редко встречающихся и терапевтически важных веществ, или же 3) более высокой t°. Принято (Deutsches Baderbuch) воду считать минеральной, если 1 л содержит более 1 г всех растворенных твердых веществ (включая гидрокарбонаты) или более 0,25 г свободного угольного ангидрида (С0 2); 1 мг иона лития (Li"); 10 мг иона стронция (Sr**); 5 мг иона бария (Ва**); 10 мг иона закисного или окисного железа (Fe*" или Fe""); 5 мг иона брома (Вг"); 1 мг иона иода (J"); 2 мг иона фтора (F"); 1,3 мг иона гидро-арсената (HAs0 4 "); 1 мг лг-мышьяковой к-ты (HAs0 2); 1 мг всей титруемой иодом серы (S, отвечающая H 2 S+HS" + S 2 0 3 "-f-S0 3 "); Ъ мг м- борной к-ты (НВ0 2); 4 милли-эквивалента титруемой щелочности или гидрокарбонатов и карбонатов щелочей, отвечающей 340 мг NaHC0 3 . Вода также признается минеральной, если обладает радиоактивностью более 3,5 единиц Махе или t° выше +20°. Происхождение М. и. связано с фактом циркуляции воды в земной коре. Все пласты земной коры грубо можно разделить на водопроницаемые (например песок) и водоупорные (например глина); большие количества подземных вод могут передвигаться только по первым. Выход подземной воды на поверхность может иметь место 1) при выходе водоносного пласта на поверхность на склоне горы, в овраге (а при наличии складчатости и размыва пластов-и в любых условиях рельефа), 2) при нарушении целости, или т. н. «сплошности» водоупорных пластов, покрывающих водоносный пласт; такое нарушение может быть естественным (трещины) и искусственным (буровые скважины, шахты). Сама вода минеральных ис- , точников, по Зюссу, получается двумя путями: 1) так наз. ювенильная вода выделяется в глубоких слоях земной коры или у вулканических очагов из магмы; 2) вадозные воды (см. Вадозные источники) происходят из вод поверхностных, прошедших под землей б. или м. длинный путь. Являясь весьма активным химическ. реагентом и будучи распространена на земной поверхности повсеместно, вода давно переработала те вещества, к-рьте могли вступать с нею в энергичное взаимодействие, и потому в наст, время мы наблюдаем в природе лишь сравнительно медленно идущие процессы растворения, выщелачивания, обменной адсорпции и т. п. Хим. активность. воды обусловлена в значительной мере несимметричным строением ее молекулы, полярностью молекулы; в силу этой полярности молекулы воды притягивают как друг друга (явления ассоциации), так и посторонние молекулы, а также и ионы. Этими притяжениями и обусловлена в первую очередь способность воды к растворению"и выщелачиванию горных пород. Соли й другие растворенные вещества. попадают в минеральную воду многими путями. Эксгаляции магмы, т. е. раскаленные пары, выделяющиеся из жидкой магмы, состоят не только из воды, но и еще из целого ряда веществ (H 2 S, C0 2 , Н 3 В0 3 , НС], щелочи); при охлаждении ббльшая их. часть растворяется в воде. Дождь и снег увлекают с собой из воздуха пыль, 0 2> N 2 , 0 3 , S0 2 , S0 3 , NPI 3 , окислы азота, Nad": (особенно над морем) и т. д. Дождевая вода; может содержать соли далеко не в ничтожных количествах: до 950 мг NaCl, до 16 мг- NH 3 в 1 л и т.д. Протекая через пласты земной коры, вода обогащается солями. Состав минеральной воды зависит от того, с какими горными породами, в какой последовательности, при каких условиях (температура и давление) и как долго находилась вода в соприкосновении. Действию воды подвержены все породы, но в разной степени. Особенно резко отличаются друг от друга воды, образовавшиеся путем взаимодействия с первичными кристаллическими горными породами, и воды,получившие свою» минерализацию в пластах пород осадочных. В первую очередь из осадочных пород выщелачиваются легко растворимые соли, захваченные ими в период осаждения солей из морской воды. Особенно энергичным растворителем является вода, обладающая кислой реакцией от присутствия угольной к-ты. или других к-т. Так, в 1 л чистой воды растворяется 0,013 з СаС0 3 , а в воде, насыщенной С0 2 при 1 атм. давл.,-1,099 г СаС0 3 . Кислая реакция может обусловливаться также гуминовыми к-тами (болотные воды) или серной к-той, получающейся при окислении сероводорода, серы, пиритов, при гидролизе сульфатов алюминия и железа. Вообще при действии на породы воды, уже содержащей. растворенные вещества (газы, соли, к-ты), происходит целый ряд реакции обмена с об- разованием как растворимых, так и нерастворимых продуктов. Примеры реакций: СаС0 3 + Н 2 0 + С0 2 ^Са(НС0 3) 2 ; MgC0 3 +H 2 0 + C0 2 £Mg(HC0 3) 2 ; Fe0 + H 2 0+2C0 2 £Fe(HC0 3) 3 ; CaC0 3 +H 2 S0 4 ->CaS0 4 + H 2 0 + C0 2 ; Fe(HC0 3) 2 +CaC0 3 £FeC0 3 +Ca(HC0 3) 2 ; FeC0 3 + H,S:£FeS+H,0 + CO,; FeS 2 +2C0 2 +2H 2 O^H 2 S + Fe(HC0 3) 2 + S. Согласно с опытами и выводами новейшей теории растворов электролитов (Debye иг Нйске1)ионы, находящиеся в растворе, часто способствуют растворению трудно растворяющихся солей(CaC0 3 , CaS0 4 . 2Н 2 0) и уменьшают растворимость газов. Это изменение растворимости может достигать значительной величины. Так, в 1 л чистой воды при 25° растворяется 2,08 г CaS0 4 , а в 1 л воды, содержащей 58 г NaCl, при той же t° растворяется 6,24 г CaS0 4 . При взаимодействии воды, содержащей Са(НС0 3) 2 или CaS0 4 , с породами, содержащими Na(глины), образуются NaHC0 3 или Na 2 S0 4 ; т. о. по всей вероятности объясняется генезис многих содовых и сульфатных минеральных вод. Отдельные струи вод разного состав а могут под землей встретиться и, смешавшись, дать воду нового состава. При этом может быть достигнут предел растворимости для нек-рых солей, и они выпадут из раствора. Состав полученной воды связан с количеством и составом смешавшихся вод определенной математической зависимостью. Биохим. процессы в земной коре также влияют на состав вод. Так, сульфатные воды при встрече с породами, содержащими органические вещества, часто дают сероводород и угольную к-ту. Процесс этот вызывается бактериями, к-рые живут за счет выделяемой при этом энергии (Microspira desulfuricans и др.). Простейшая схема процесса: 2C+Na 2 S0 4 ->Na 2 S+2C0 2 ; Na 2 S + 2C0 2 +2H 2 0-*2NaHC0 3 + H 2 S. В областях распространения нефтеносных и битуминозных пород часто встречаются воды, совершенно не содержащие сульфатов, обогащенные карбонатами и сульфидами. Нефтяные воды обычно относятся к хлорид-ным, часто содержат значительные количества бария (до 0,4 г в 1 л) и повышенное количество Вг" и J" сравнительно с морской водой. Биохимическими же процессами объясняется во многих случаях переход нитратов в нитриты и аммоний. Микроорганизмы принимают участие также и в образовании барежина (см.). Состав М. и. В минеральн. водах встречаются в виде «следов» почти все известные элементы, но в относительно значительных количествах - только немногие, г. о. Na*, Ca",Mg ,C]",HC0 3 ",S0 4 ", меньше K*,H 2 Si0 3 , COo,N0 3 " и Fe"\ реже или в еще меньших количествахС0 3 ",Вг",«Г,Н8",Р",8 2 0 3 ",80 0 ", HSiCV, HP0 4 ", HAsO/", В^/Мл-ДО-Д", Мд"\ Fe~, АГ\ Zn*\Cu",Ni",HB0 2 , Н 2 ТЮ 3 ; органич. к-ты: нафтеновые (пента- и гексаме-тиленкарбоновые), гуминовые; из газов в больших количествах выносятся минеральными водами С0 2 , СН 4 , N 2 , в меньших H 2 S, COS, 0 2 , H 2 , Ar, He, Ne, Кг, Хе, а также радиоактивные эманации: из коллоидов - S, Fe(OH) 3 , A1(0H) 3 , Mn(OH) a , As 2 S 3 . FeS, Н 2 8Ю 3 ,Н 2 ТЮ 3 ,органичеекие вещества. Максимальная концентрация данного элемента и соединение, в виде которого он присутствует в минеральной воде, для большинства элементов находится в определенной зависимости от присутствия и от концентрации ряда других элементов или соединений. Так, концентрация водородных ионов определяет степень диссоциации всех слабых кислот: H 2 C0 3 , H 2 S, H 2 Si0 3 , Н 2 ТЮ 3 , H 3 P0 4 , H 3 As0 4 , H 3 B0 3 и т. д. Углекислота, сероводород и их ионы связаны между собой отношением x = 0,3, x Максимальные возможные концентрации Са (HC0 3) 2 , Mg(HC0 3) 2 , Fe(HC0 3) 2 зависят от концентрации свободного угольного ангидрида С0 2 . Не могут существовать одновременно в сколько-нибудь значительных количествах окислители N О 3 ", Fe*", O a и восстановители-H 2 S. Присутствие HS", H 2 S или С0 3 " практически исключает возможность присутствия в растворе ионов металлов кроме щелочных.-Коллоиды в минеральных водах часто являются продуктами метамор-физации воды уже после выхода ее на земную поверхность. Так образуются коллоидная сера, коллоидная Fe(OH) 3 , FeS и др.-Каталитическое действие многих минеральных вод на различные реакции (разложениеН 2 0 2 , окрашивание гваяковой смолы) обусловливается поверхностными свойствами коллоидных частиц, образующихся в воде. Методы хим. и физ.-хим. исследований минеральных источников являются одной из сложнейших глав физической и аналитической химии; точный и полный анализ минеральной воды может производиться только в специальной, хорошо оборудованной лаборатории. Сан.-бактериол. анализ минеральных вод производится методами, принятыми для пресных вод.-О бозначение состава минеральных вод до последнего времени было часто произвольным; приводили состав в виде окислов,ионов или комбинировали их в соли совершенно произвольно. В 1930 г. на IV Гидрологическом совещании при Управлении курортами Наркомздрава был утвержден стандарт анализа в ионной форме в виде 5 столбцов: 1) название анионов (см.), катионов (см.) и недиссоцииро-ванных соединений; 2) содержание их в граммах в1л;3)в миллимолях (миллимоль- число миллиграммов, равное молекулярному весу); 4) в милливалях (милливаль-число миллиграммов, равное эквивалентному весу; милливаль равен миллимолю, деленному на валентность иона) и 5) в вальпроцентах (процент от суммы милливалей катионов или анионов). Для характеристики и классификации минеральных вод решающим считается 5-й столбец-вальпроценты. Для наглядной характеристики минеральной воды IV Гидрологическим совещанием принята формула Курлова-Карстенса: в начале ее ставится содержание газов и активных элементов (в граммах на 1 л); затем «степень минерализации»-сумма всех ионов и нерасщепленных молекул без газов (в граммах на 1 л); дальше следует дробь: в числителе ее помещаются в порядке убывающих чисел анионы (в вальпроцентах), в знаменателе-катионы (в вальпроцентах). Те и другие вводятся в формулу только тогда, когда они содержатся в количестве, большем 25 вальпроцентов. В конце формулы ставится t° воды и дебит в гектолитрах в сутки. Пример: Александро-Ермоловский источник в Пятигорске: м С1 40 нсо 3 з 8 0 ^=Г^ ^ i.jlcXJc со "г,№:* L 46^5600 Na 60 Ca s „ При International Society of Medical Hydrology работает специальная комиссия по стандартизации описаний М. и. Ею выра- 13 ботан стандарт, сходный с русским и отличающийся гл. обр. тем, что за единицу принят не грамм, а миллиграмм. Номенклатура и классификация минеральных вод по постановлению IV Гидрологического совещания должны основываться на названиях ионов, а не солей; как правило в название вводятся только ионы, содержащиеся в количестве не менее 25 вальпроцентов. Терапевтически активные элементы и газы вводятся в название и в формулу Курлова при концентрации их не ниже: Fe"-10 мг.,Ы" -5 мг, J"-10 мг, Вт"- 25 мг, HAs0 4 " и НР0 4 "-I мг, H 2 S свободного-10 мг, С0 2 своб.-750 мг.-Г о р я-ч и м и называют источники с t° выше 35°; при 20°-35° их называют теплыми. Т. о. названия составляются из названий терапевтически активных веществ (в порядке убывающих концентраций в граммах), анионов (в порядке убывающих значений вальпроцентов) и катионов (в порядке убывающих значений вальпроцентов). В конце названия стоит t°, если она того заслуживает. На основе этой номенклатуры проф. В. А. Александровым в «Основах курортологии» развита новейшая классификация минеральных вод, имеющая перед всеми прежними преимущества однозначности: каждый класс имеет определенные числовые пределы, и ни одна вода не может попасть сразу в два класса. Как пример приводится анализ воды Баталинского источника. В старых клас- Баталинский источник (Кавказские мин. воды). Карстенс Температура. . . 9,6° Дебит в сутки. . . , 7,2 гл М ил- В 1 л воды Грам- М ил- Проц. мил- содержится мы мо ли вал и ли-валь Ион калия К*. . . 0,0228 0,58 0,58 0,3 » натрия Na*. . 3,7989 164,81 164,81 50,4 » кальция Са". 0,4600 11,50 23,00 7,0 » магния Mg". . 1,6877 69,28 138,56 42,3 » железа Fe". . следы - - - » алюмин. АГ" следы " " 27= 326,95 100,0 Ион хлора СГ. . 1,3455 37,95 1 37,95 11,6 » сульфатаS0 4 " 13,351 138,98 ! 277,96 85,0 » гидрокарбо- ната НС0 3 ". . 0,6729 11,03 11,03 ! 3,4 1 Г= 326,94 100,0 Кремневой кисло- 0,21 Свободной СО а. . 0,1025 2,33 2 = 436,7 so 4s5 M,1,1 Na..M &1 T ,.°, D т „ Источник сульфатный, на трневый, магнг евый сификациях, часто употребляемых еще и теперь, очень много неясностей; чтобы облегчить использование старых литературных данных, приводится сводка главнейших названий наряду с отвечающими им ионами: источники железные, железистые содержат Fe**, стальные-Fe", известковые-Са", земельные, землистые-Са", Mg", Fe", щелочноземельные-2 значения: 1) Са", Mg", 2) Са", Mg", К", Na*; щелочные-2 значения^ 1) Na*, К*, 2) воды щелочной реакции; гла-" уберовые - Na 2 S0 4 ; горькие, сульфатные, сернокислые-SO/"; гипсовые-CaS0 4 ; соленые, муриатич., рассольные-СГ; газовые- обычно С0 2 , реже H 2 S, CH 4 , N 2 ; сульфидные, сернистые, серные, сероводородные, содержащие H 2 S или HS" или то и другое вместе [правильнее называть сернистыми воды с S0 3 ", серными-с серой свободной (коллоидной), сероводородными-с H 2 S свободн.]; углекислые-С0 2 , НС0 3 ", С0 3 " (правильно только С0 2); карбонатные-СО 3 ^НС0 3 "(п Р а -вильно-только С0 3 "); двууглекислые, гидрокарбонатные - НС0 3 "; мышьяковистые, мышьяковые -As. (Обзор старых классификаций - см. Бальнеология.) - Международная комиссия по стандартизации описаний М. и. предложила в 1930 году очень простую классификацию-по одному преобладающему или активному ингредиенту, напр. хло-ридная, железная и т. п. Широкого распространения эта классификация пока не имеет. Радиоактивность минеральных вод измеряется обычно в единицах Махе (ME); колеблется от долей ME до тысяч; зависит 1) от содержания газа - эманации радия (Em); такая радиоактивность быстро исчезает, т.к. период полураспада Em равен 3,85 дня; или 2) от содержания солей самого радия или других радиоактивных металлов с большим периодом полураспада (радий- 1760 лет); такая радиоактивность может и возрастать до известных пределов, так как к ней прибавляется активность продуктов распада. - К р и о с к о п и ч е с к и е и э б у-лиоскопические исследования (понижение t° замерзания и повышение t° кипения) минеральных вод определяют общую концентрацию всех веществ, растворенных в минеральной воде, следовательно и ее осмотические свойства, или «тоничность» (tonicity). Международной комиссией по стандартизации описаний минеральных вод предложено называть «гипотоничн.ыми»воды, осмотическое давление к-рых меньше осмотического давления раствора, содержащего 9 г NaCl в 1 л, или 303 миллимоля всех ионов и молекул; «изотоничными» и «гипертонич-ными» называют воды с осмотическим давлением, равным или соответственно большим, чем у этого раствора. Изменения в составе минеральной воды могут зависеть от изменения режима источника или (чаще) от изменения условий при выходе воды на поверхность. В первом случае чаще всего изменения зависят от подтока пресной воды к основной минеральной струе; для вадозных и смешанных источников колебания состава имеют место напр. при сезонных колеэаниях количества осадков; такие изменения всегда сопровождаются изменениями дебита и обычно t°. Поэтому область питания источника должна быть защищена от возможностей загрязнения и от нарушений нормального режима вод, что является задачей горно-санитарной охраны (см.) М. и.-При выходе минеральной воды на поверхность уеловияее существования радикально меняются; это всегда сопровождается нек-рым изменением состава; часто эти изменения настолько велики, что через небольшой промежуток времени совершенно обесценивают минеральную воду. При изменении t° воды изменяются условия растворимости, и вещества, бывшие в насыщенном растворе, могут выделиться. Так, термальные источники при охлаждении часто отлагают кремнистые осадки; холодные источники, насыщенные газом, согреваясь, отдают его в виде пузырьков. Уменьшение давления тоже вызывает выделение пузырьками газов, насыщающих воду. Однако потеря газов происходит не только путем пузырьков, но и путем невидимой диффузии газа из воды в воздух. Особенно важна потеря СО 2 , так как благодаря этому изменяется реакция воды (повышение рН), следствием чего является переход гидрокарбонатов в карбонаты и выпадение в осадок СаС0 3 , MgC0 3 , Fe(OH) 3 . Они образуют у выхода источника отложения, называемые травертинами. С уменьшением концентрации углекислоты (соотв. повышением рН) изменяются условия сульфиднокарбонатно-го равновесия, и часть свободного H 2 S переходит в «связанное» состояние-в HS".-Одновременно происходит процесс насыщения минеральной воды газами атмосферы; особенно важен здесь кислород, т. к. им обусловливается целый ряд окислительных процессов, радикально меняющих состав минеральной воды. Соединения закисного железа окисляются в соединения окиси, к-рые более подвержены гидролизу и потому обычно выпадают в осадок; то же относится и к марганцу. Свободный сероводород окисляется в зависимости от условий до серы или до серной к-ты. Сульфиды (S") и гидросульфиды (HS") при окислении дают гипосульфит (S 3 0 3 "). H сульфат (SO/")- При этом как промежуточный продукт появляется в растворе и сульфит (S0 3 ")- Во всех этих процессах принимают большое участие микроорганизмы; их органическое вещество часто является связующим материалом для осадков S, Fe(OH) 3 и др.,-так получаются студенистые массы «муффа», «барежина» и др. осадков; эти скопления вызывают закупорку труб, по к-рым минеральная вода подается к ваннам. или "бюветам (см.). Для бальнеотехники особенно важны физич. свойства минеральной в оды. Темп, измеряется в градусах Цельсия. Теплопроводность воды (К) истинная очень мала, но практически передача тепла из ванны в тело б-ного и обратно происходит очень быстро вследствие конвекционных токов, благодаря которым слой воды, прилегающий к телу, .постоянно меняется; отдача тепла особенно ускоряется при т. наз. проточных ваннах (Strombader), при душах Шарко и т. п. Теплоемкость (С) колеблется от 1 (чистая вода) до 0,75 (крепкие рассолы), т. е. рассолы отдают телу или отнимают от него меньше тепла, чем воды малой минерализации при той же t°. Уд. в. (d) минеральных вод обычно близок к 1; повышается с увеличением количества раствор, солей и в рассолах достигает 1,3; уд. в. определяет давление воды на тело-б-ного, погруженное на известную глубину. Электропроводность Г -1 измеряется в обратных омах на 1 см 3 ; имеет значение при гальваноминеральных ваннах; зависит от состава солей и степени их диссоциации. Материалы, употребляемые для каптажа М. и. и для проведения воды к месту пользования, подвергаются действию воды и сами влияют на ее состав. Цемент, бетон разъедаются углекислой водой и обогащают ее кальцием; сульфаты вод вызывают разрушение бетона в силу объемных изменений при образовании комплексных соединений в бетоне. Железные трубы подвержены действию углекислых, сульфидных, рассольных вод; особенно сильно "действуют на все материалы (кроме дерева и стекла) сульфидные воды в месте их соприкосновения с воздухом; образующаяся здесь серная кислота разъедает все в очень небольшой срок; поэтому сульфидные воды необходимо проводить совершенно герметично, следя за постоянным заполнением всего сечения труб водой.-Возможность больших изменений состава минеральной воды как под землей, так и на поверхности вызывает необходимость постоянного контроля состава путем кратких анализов. Обычно вполне достаточным является ежедневное определение 1-2 ингредиентов, напр. для соленых вод-хлора; для сульфидных-H 2 S, щелочности (рН); для углекислых-С0 2 своб. и рН и т. д. Методы анализа при контроле применяются исключительно объемные или колориметрические как требующие минимум времени. Небольшие изменения в составе воды легко обнаруживаются по изменению ее электропроводности. Существуют самопишущие приборы, регистрирующие колебания электропроводности воды. Сроки и принципы наблюдения над М. и. и хим. контроля их установлены в 1925 году Главным курортным управлением. Колебания дебита или t° источника всегда указывают на некоторое изменение состава. Нагрев и охлаждение минеральной воды нужно производить, по возможности избегая соприкосновения ее с воздухом. Лучшей системой являются закрытые змеевики, охлаждаемые снаружи водой; для нагрева наиболее рациональным является метод откидных змеевиков, опускаемых в ванну и нагреваемых внутри паром. Необходимо избегать перегрева воды во избежание потери газов. При нагревании или хранении воды в баках большую услугу оказывают деревянные крышки, плавающие на поверхности воды, т. к. они сводят к минимуму поверхность соприкосновения с воздухом.- Основные условия техники розлива минеральных вод - стерильность, отсутствие аэрации. При хранении и пересылке минер. вод бутылки нужно держать в лежачем положении, чтобы пробка была всегда смочена водой: в противном случае пробка пересыхает, герметичность укупорки теряется, и с уходом газов состав воды подвергается изменению. Существенным условием устойчивости состава является низкая t°; поэтому минеральные воды обычно хранят в подва- лах и ледниках, перевозят в изотермических вагонах. Насыщение минеральной воды СО 2 значительно повышает не только вкусовые качества, но и устойчивость состава минеральной воды в бутылке; все же леч. свойства бутылочной воды не идентичны. свойствам воды у источников.-И ск.умственные минеральные воды составляются обычно из химически чистых солей по анализу естественной воды; полное тождество состава и свойств искусственной воды и естественной может быть достигнуто лишь с большим трудом; особые затруднения представляет точная имитация состава растворенных газов и свойств коллоидов. Из искусственных минеральных вод широкое распространение имеют лишь соленые ванны, ванны из морской соли, углекислые. Начинают входить в употребление искусственные сероводородные ванны. Терапевтическое применение М. и. - см. Бальнеотерапия. Зоны санит.охраны М.и.- см. Горно-санитарная охрана. Лит.: Бертенсон Л., Лечебн. воды, грязи и морские купанья в России и за границей, СПБ, 1901; Голубинин Л., Минеральные воды и лечебные грязи, М., 1911; Естественные производительные силы России, т. IV, вып. 40 - Минеральные воды, изд. КЕПС Академии наук СССР, П., 1922; К у р л о в М., Классификация сибирских целебных вод, Томск, 1928; Основы.курортологии, под ред. Г. Данишевского и М. Кончаловского, т. I-III, М., 1931; Хлопин Г., Методы санитарных исследований, т. I, Л., 1928. См. также лит. к ст. Бальнеология, Каптаж и R-урорты. С. Щукарев.

Минералогия это наука, исследующая природные химические соединения, называемые минералами, а именно их свойства, состав, структуру и условия генезиса. Это одна из базовых геологических дисциплин.

История науки

Минералогия является древнейшей среди геологических наук. Она появилась намного раньше, чем геология сформировалась в качестве самостоятельного научного направления. Первые минералогические наблюдения относятся к античным временам. Впервые они встречаются в трудах Аристотеля, где он выделил группу металлоидов как подобных металлам образований и классифицировал минералы на руды и камни. Теофраст описал в практическом аспекте 16 минеральных видов, разделив их на камни, металлы и земли. Позже Плиний Старший собрал в четырех трактатах все доступные в то время данные о минералах.

В средневековье развитие геологических наук наиболее интенсивно происходило в арабских странах. Одним из выдающихся ученых в данной сфере является Бируни. Он создал описания драгоценных камней , впервые используя физические параметры такие как относительная твердость и удельный вес. В те же времена Ибн-Сина классифицировал известные минералы на растворимые (соли), земли и камни, горючие (сернистые) ископаемые, плавкие (металлы). В данный период в Европе алхимик Альберт Великий объединил данные о минералах.

К концу средневековья минералогические знания были весьма скудными. Под многими минералами понимали руды. Ввиду отсутствия химии не было данных о их химической природе.

В XVI в. В. Бирингуччио и Г. Агриколлой были составлены сводки минеральных знаний. Последний усовершенствовал классификацию Ибн-Сины. Также он подробно описал диагностические признаки и затронул генезис рудных месторождений.

В XVII в. датские, голландские и английские ученые положили начало геометрической кристаллографии и кристаллооптике.

К XVIII в. основную роль в сфере минералогии играла Швеция благодаря горнодобывающей промышленности. Поэтому здесь сформировалась группа минералогов, среди которых были К. Линней и А. Кронштедт. Первый пытался использовать для минералов двойную номенклатуру, а второй исключил из объекта изучения организмы и исследовал химический состав.

В то время под минералогией все еще понимали научную дисциплину с намного более обширным предметом изучения, чем сейчас. Так, в 1636 г. данный термин был введен в литературу Бернардом Цезиусом в качестве науки о всех естественных ископаемых телах. То есть существовало единое геолого-минералогическое направление естествознания.

Оно было разделено в 1780 г. А.Г. Вегенером на геогнозию (общая и динамическая геология), ориктогнозию (минералогия и петрография), горное искусство (горное дело). Благодаря этому, минералогия обрела более конкретный объект изучения (горные породы и окаменелости отделили от минералов). К тому же появились новые классификация, описательные методы изучения, номенклатура, курс обучения.

В 1783 г.Ж.Б. Роме де Лиля измерил межгранные углы кристаллов некоторых минералов, Р.Ж. Аюи в 1801 г. создал модель их строения. Это вместе с работами У. Воластона способствовало развитию кристаллографии.

Первым российским минералогом считают В.М. Севергина. Продолжив идеи М.В. Ломоносова, он подразделил ископаемые тела на простые (минералы) и сложные (горные породы и фоссилии).

В XIX в. зародились химическое и кристаллографическое направления минералогии. Появились многие фундаментальные понятия.

В XX в., благодаря учению о правиле фаз, особо интенсивно развивались физико-химическое и экспериментальное направления. Кроме того, начался синтез различных разделов минералогии.

Со второй половины XX в.начали развиваться такие направления как органическая, био- и наноминералогия.

Современная минералогия

В настоящее время данная дисциплина включает несколько направлений.

Описательная. Характеризует минералы, систематизирует и классифицирует их. Включает два раздела: физику минералов (применяет методы физики твердого тела для изучения кристаллов) и минераграфию (использует специфические методы такие как микрохимические реакции, оптику отраженного света и т. д.).

Генетическая. Исследует способы и процессы генезиса и преобразования минералов в естественных условиях. Также включает несколько разделов: топоморфизм (выявляет взаимосвязи особенностей минералов и условий их генезиса), термобаро-геохимию (изучает включения в минералах), изотопические исследования (выяснение источника вещества для минералообразования), трифогенезис (изучает способы питания при минералообразовании), топогенез (рассматривает законы пространственного распределения минералов), парагенетический анализ (выявление законов последовательной пространственной и временной смены парагенезисов для исследования эволюции минералообразования), учение о сосуществующих минералах (использование их как геобарометров и геотермометров), энергетические и термодинамические расчеты (оценка кислотно-основных свойств минеральных фаз), онтогенетический и кристалломорфологический анализ (выяснение истории и механизма генезиса минералов).

Экспериментальная. Занимается моделированием естественного минералообразования и обстановки формирования минералов. Включает в качестве самостоятельного раздела облагораживание и синтез их.

Региональная. Исследует отдельные территории такие как рудные месторождения, геологические провинции, экономико-географические регионы с целью выяснения законов пространственного распределения ассоциаций и минералов.

Топоминералогия. Рассматривает законы формирования и распределения их в геологических системах.

Минералогия космических тел. Исследует минералогические вопросы для планет, метеоритов и луны.

Астроминералогия. Перспективное направление, объединяющее минералогию, астрономию, физику. Изучает минеральный состав и минералы метеоров, астероидов и прочих космических тел, околозвездной среды.

Прикладная. Включает три раздела: поисковую минералогию (занимается выяснением поисковых и разведочных критериев, совершенствованием поисковых и оценочных методов, разработкой научных основ совмещения минералогических, геохимических и геофизических поисковых методов с целью увеличения эффективности геологоразведки), технологическую (направлена на увеличение полноты и комплексности применения минерального сырья путем минералогического и минералого-технологического картирования месторождений и рудных полей, технологического прогнозирования, стабилизации и планирования добычи руды, изучения технологических особенностей минералов, разработки способов направленного их изменения, контроля состава концентратов), новых видов сырья (выявляет особенности не используемых минералов и возможные области их применения).

Список минералов

Если показать все известные минералы одним списком, то получится очень много названий для одной страницы. Мы разделили всё по алфавиту.

Образование

В вузах минералогия не представлена в качестве отдельной специальности. Обучение по данной профессии чаще всего производят в рамках специальности прикладная геология либо прикладная геохимия. Они подразумевает изучение общей геологии, основ картографии и геодезии, математических методов моделирования в геологии, безопасности ведения геологоразведки, инженерной графики, общей химии, многих дисциплин специализации и др.

Предусмотрены лабораторные работы и полевые минелогические практики. Помимо минералога, обучение дает такие профессии как геолог, геохимик, геокриолог, гидроэколог, топограф, гидрогеолог, маркшейдер, эколог, петролог, палеонтолог.

В "классическом виде" не особо востребована. Большинство специалистов работают в научной или образовательной сферах. Поэтому вышеназванные универсальные специальности выгодны тем, что дают возможность работы по нескольким профессиям.

Заключение

Минералогия относится к геологическим естественнонаучным дисциплинам. Это древнейшая среди геологических наук, появившаяся раньше самой геологии. В настоящее время включает несколько направлений и имеет большое прикладное значение как наука о процессах формирования, свойствах, методах разработки минерального сырья. Несмотря на это, минералоги в России востребованы мало. Поэтому обучение по данной профессии производится в рамках специальностей прикладная геология либо прикладная геохимия, что дает гораздо большие возможности для трудоустройства.