Токсичность кадмия и его соединений. Современные проблемы науки и образования Пдк тяжелых металлов в воде таблица

Не все знают какие химические элементы всё-таки входят в эту категорию. Есть очень много критерий, по которому, разные учёные определяют тяжелые металлы: токсичность, плотность, атомная масса, биохимические и геохимические циклы, распространение в природе. По одним критериям в число тяжелых металлов входят мышьяк (металлоид) и висмут (хрупкий металл).

Общие факты про тяжелые металлы

Известно более 40 элементов, которые относят к тяжелым металлам. Они имеют атомную массу больше 50 а.е. Как не странно именно эти элементы обладают большой токсичностью даже при малой кумуляции для живых организмов. V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Mo…Pb, Hg, U, Th…все они входят в эту категорию. Даже при их токсичности, многие из них являются важными микроэлементами , кроме кадмия, ртути, свинца и висмута для которых не нашли биологическую роль.

По другой классификации (а именно Н. Реймерса) тяжелые металлы — это элементы которые имеют плотность больше 8 г/см 3 . Таким образом получится меньше таких элементов: Pb, Zn, Bi, Sn, Cd, Cu, Ni, Co, Sb.

Теоретически, тяжелыми металлами можно назвать всю таблицу элементов Менделеева начиная с ванадия, но исследователи нам доказывают, что это не совсем так. Такая теория вызвана тем, что не все они присутствуют в природе в токсических пределах, да и замешательство в биологических процессах для многих минимальна. Вот почему в эту категорию многие включают только свинец, ртуть, кадмий и мышьяк. Европейская Экономическая Комиссия ООН не согласна с этим мнением и считает что тяжелые металлы это — цинк, мышьяк, селен и сурьма. Тот же Н. Реймерс считает, что удалив редкие и благородные элементы из таблицы Менделеева, остаются тяжелые металлы. Но и это тоже не правило, другие к этому классу добавляют и золото, платину, серебро, вольфрам, железо, марганец. Вот почему я вам говорю, что не всё ещё понятно по этой теме…

Обсуждая про баланс ионов различных веществ в растворе, мы обнаружим, что растворимость таких частиц связанно со многими факторами. Главные факторы солюбилизации являются рН, наличие лигандов в растворе и окислительно-восстановительный потенциал. Они причастны к процессам окисления этих элементов с одной степени окисления к другой, в которой растворимость иона в растворе выше.

В зависимости от природы ионов, в растворе могут происходить различные процессы:

  • гидролиз,
  • комплексообразование с разными лигандами;
  • гидролитическая полимеризация.

Из-за этих процессов, ионы могут переходить в осадок или оставаться стабильными в растворе. От этого зависит и каталитические свойства определённого элемента, и его доступность для живых организмов.

Многие тяжелые металлы образуют с органическими веществами довольно стабильные комплексы. Эти комплексы входят в механизм миграции этих элементов в прудах. Почти все хелатные комплексы тяжелых металлов устойчивы в растворе. Также, комплексы почвенных кислот с солями разных металлов (молибден, медь, уран, алюминий, железо, титан, ванадий) имеют хорошую растворимость в нейтральной, слабощелочной и слабокислой среды. Это факт очень важен, потому что такие комплексы могут продвигаться в растворенном состоянии на большие расстояния. Самые подверженные водные ресурсы — это маломинерализованные и поверхностные водоёмы, где не происходит образование других таких комплексов. Для понимания факторов, которые регулируют уровень химического элемента в реках и озерах, их химическую реакционную способность, биологическую доступность и токсичность, необходимо знать не только валовое содержание, но и долю свободных и связанных форм металла.

В результате миграции тяжелых металлов в металлокомплексы в растворе могут произойти такие последствия:

  1. В первых, увеличивается кумуляция ионов химического элемента за счёт перехода этих из донных отложений в природные растворы;
  2. Во вторых, возникает возможность изменения мембранной проницаемости полученных комплексов в отличие от обычных ионов;
  3. Также, токсичность элемента в комплексной форме может отличаться от обычной ионной формы.

Например, кадмий, ртуть и медь в хелатные формы, имеют меньшую токсичность, чем свободные ионы. Вот почему не правильно говорить о токсичности, биологической доступности, химической реакционной способности только по общему содержанию определённого элемента, при этом, не учитывая долю свободных и связанных форм химического элемента.

Откуда же берутся тяжелые металлы в нашу среду обитания? Причины присутствия таких элементов могут быть сточные воды с разных промышленных объектов занимающийся черной и цветной металлургией, машиностроением, гальванизацией. Некоторые химические элементы входят в состав пестицидов и удобрений и таким образом могут быть источником загрязнения местных прудов.

А если войти в тайны химии, то самым главным виновником повышения уровня растворимых солей тяжелых металлов является кислотные дожди (закисление). Понижение кислотности среды (уменьшение рН) тянет за собою переход тяжелых металлов из малорастворимых соединений (гидроксиды, карбонаты, сульфаты) в более хорошо растворимые (нитраты, гидросульфаты, нитриты, гидрокарбонаты, хлориды) в почвенном растворе.

Ванадий (V)

Надо отметить в первую очередь, что загрязнение этим элементом натуральными способами маловероятна, потому что этот элемент очень рассеян в Земной коре. В природе обнаруживается в асфальтах, битумах, углях, железных рудах. Важным источником загрязнения является нефть.

Содержание ванадия в природных водоёмах

Природные водоёмы содержит ничтожное количество ванадия:

  • в реках — 0,2 — 4,5 мкг/л,
  • в морях (в среднем) — 2 мкг/л.

В процессах перехода ванадия в растворённом состоянии очень важны анионные комплексы (V 10 O 26) 6- и (V 4 O 12) 4- . Также очень важны растворимые ванадиевые комплексы с органическими веществами, типа гумусовых кислот.

Предельно-допустимая концентрация ванадия для водной среды

Ванадий в повышенных дозах очень вреден для человека. Предельно-допустимая концентрация для водной среды (ПДК) составляет 0,1 мг/л, а в рыбохозяйственных прудах, ПДК рыбхоз ещё ниже — 0,001 мг/л.

Висмут (Bi)

Главным образом, висмут может поступать в реки и озера в результате процессов выщелачивания минералов содержащих висмут. Есть и техногенные источники загрязнения этим элементом. Это могут быть предприятия по производству стекла, парфюмерной продукций и фармацевтические фабрики.

Содержание висмута в природных водоёмах

  • Реки и озера содержат меньше микрограмма висмута на литр.
  • А вот подземные воды могут содержать даже 20 мкг/л.
  • В морях висмут как правило не превышает 0,02 мкг/л.

Предельно-допустимая концентрация висмута для водной среды

ПДК висмута для водной среды — 0,1 мг/л.

Железо (Fe)

Железо — химический элемент не редкий, оно содержится во многих минералах и пород и таким образом в природных водоёмах уровень этого элемента повыше других металлов. Оно может происходить в результате процессов выветривания горных пород, разрушения этих пород и растворением. Образуя разные комплексы с органическими веществами из раствора, железо может быть в коллоидальном, растворённом и в взвешенном состояниях. Нельзя не упомнить про антропогенные источники загрязнения железом. Сточные воды с металлургических, металлообрабатывающих, лакокрасочных и текстильных заводов зашкаливают иногда из-за избытка железа.

Количество железа в реках и озерах зависит от химического состава раствора, рН и частично от температуры. Взвешенные формы соединений железа имеют размер более 0,45 мкг. Основные вещества которые входят в состав этих частиц являются взвеси с сорбированными соединениями железа, гидрата оксида железа и других железосодержащих минералов. Более малые частицы, то есть коллоидальные формы железа, рассматриваются совместно с растворенными соединениями железа. Железо в растворённом состоянии состоит из ионов, гидроксокомплексов и комплексов. В зависимости от валентности замечено что Fe(II) мигрирует в ионной форме, а Fe(III) в отсутствии разных комплексов остаётся в растворённом состоянии.

В балансе соединений железа в водном растворе, очень важно и роль процессов окисления, так химического так и биохимического (железобактерии). Эти бактерии ответственны за переход ионов железа Fe(II) в состояние Fe(III). Соединения трехвалентного железа имеют склонность гидролизовать и выпадать в осадок Fe(OH) 3 . Как Fe(II), так и Fe(III) склоны к образованию гидроксокомплексов типа — , + , 3+ , 4+ , + , в зависимости от кислотности раствора. В нормальных условиях в реках и озерах, Fe(III) находятся в связи с разными растворёнными неорганическими и органическими веществами. При рН больше 8, Fe(III) переходит в Fe(OH) 3 . Коллоидные формы соединений железа самые малоизучены.

Содержание железа в природных водоёмах

В реках и озерах уровень железа колеблется на уровне n*0,1 мг/л, но может повыситься вблизи болот до несколько мг/л. В болотах железо концентрируется в форме солей гуматов (соли гуминовых кислот).

Подземные водохранилища с низким рН содержат рекордные количества железа — до нескольких сотен миллиграммов на литр.

Железо — важный микроэлемент и от него зависят разные важные биологические процессы. Оно влияет на интенсивность развития фитопланктона и от него зависит качество микрофлоры в водоёмах.

Уровень железа в реках и озерах имеет сезонный характер. Самые высокие концентрации в водоёмах наблюдаются зимою и летом из-за стагнации вод, а вот весною и осенью заметно снижается уровень этого элемента по причине перемешивания водных масс.

Таким образом, большое количество кислорода ведёт к окислению железа с двухвалентной формы в трехвалентной, формируясь гидроксид железа, который падает в осадок.

Предельно-допустимая концентрация железа для водной среды

Вода с большим количеством железа (больше 1-2 мг/л) характеризуется плохими вкусовыми качествами. Она имеет неприятный вяжущий вкус и непригодна для промышленных целей.

ПДК железа для водной среды — 0,3 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,1 мг/л.

Кадмий (Cd)

Загрязнение кадмием может возникнуть во время выщелачивания почв, при разложения разных микроорганизмов которые его накапливают, а также из-за миграции из медных и полиметаллических руд.

Человек тоже виноват в загрязнении этим металлом. Сточные воды с разных предприятий занимающеюся рудообогащением, гальваническим, химическим, металлургическим производством могут содержать большие количества соединений кадмия.

Естественные процессы по снижению уровня соединений кадмия являются сорбция, его потребление микроорганизмами и выпадение в осадок малорастворимого карбоната кадмия.

В растворе, кадмий находится, как правило, в форме органо-минеральных и минеральных комплексов. Сорбированные вещества на базе кадмия — важнейшие взвешенные формы этого элемента. Очень важна миграция кадмия в живых организмов (гидробиониты).

Содержание кадмия в природных водоёмах

Уровень кадмия в чистых реках и озерах колеблется на уровне меньше микрограмма на литр, в загрязнённых водах уровень этого элемента доходит до нескольких микрограммов на литр.

Некоторые исследователи считают, что кадмий, в малых количествах, может быть важным для нормального развития животных и человека. Повышенные концентрации кадмия очень опасных для живых организмов.

Предельно-допустимая концентрация кадмия для водной среды

ПДК для водной среды не превышает 1 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — меньше 0,5 мкг/л.

Кобальт (Co)

Реки и озера могут загрязниться кобальтом как следствие выщелачивания медных и других руд, из почв во время разложения вымерших организмов (животные и растения), ну и конечно же в результате активности химических, металлургических и металлообрабатывающих предприятии.

Главные формы соединений кобальта находится в растворенном и взвешенном состояниях. Вариации между этими двумя состояниями могут происходить, из-за изменений рН, температуры и состава раствора. В растворённом состоянии, кобальт содержится в виде органических комплексов. Реки и озера имеют характерность, что кобальт представлен двухвалентным катионом. При наличии большого количества окислителей в растворе, кобальт может окисляться до трехвалентного катиона.

Он входит в состав растений и животным, потому что играет важную роль в их развитии. Входит в число основных микроэлементов. Если в почве наблюдается дефицит кобальта, то его уровень в растениях будет меньше обычного и как следствие могут появиться проблемы со здоровьем у животных (возникает риск возникновения малокровия). Этот факт наблюдается особенно в таежно-лесной нечерноземной зоне. Он входит в состав витамина В 12 , регулирует усвоение азотистых веществ, повышает уровень хлорофилла и аскорбиновой кислоты. Без него растения не могут наращивать необходимое количество белка. Как и все тяжелые металлы, он может быть токсичным в больших количествах.

Содержание кобальта в природных водоёмах

  • Уровень кобальта в реках варьирует от несколько микрограммов до миллиграммов на литр.
  • В морях в среднем уровень кадмия — 0,5 мкг/л.

Предельно-допустимая концентрация кобальта для водной среды

ПДК кобальта для водной среды — 0,1 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,01 мг/л.

Марганец (Mn)

Марганец поступает в реки и озера по таким же механизмам, как и железо. Главным образом, освобождение этого элемента в растворе происходит при выщелачивании минералов и руд, которые содержат марганец (черная охра, браунит, пиролюзит, псиломелан). Также марганец может поступать вследствие разложения разных организмов. Промышленность имеет, думаю, самую большую роль в загрязнении марганцем (сточные воды с шахт, химическая промышленность, металлургия).

Снижение количества усваиваемого металла в растворе происходит, как и в случае с другими металлами при аэробных условиях. Mn(II) окисляется до Mn(IV), вследствие чего выпадает в осадок в форме MnO 2 . Важными факторами при таких процессах считаются температура, количество растворённого кислорода в растворе и рН. Снижение растворённого марганца в растворе может возникнуть при его употреблении водорослями.

Мигрирует марганец в основном в форме взвеси, которые, как правило, говорят о составе окружающих пород. В них он содержится как смесь с другими металлами в виде гидроксидов. Преобладание марганца в коллоидальной и растворенной форме говорят о том что он связан с органическими соединениями образуя комплексы. Стабильные комплексы замечаются с сульфатами и бикарбонатами. С хлором, марганец образует комплексы реже. В отличие от других металлов, он слабее удерживается в комплексах. Трехвалентный марганец образует подобные соединения только при присутствии агрессивных лигандов. Другие ионные формы (Mn 4+ , Mn 7+)менее редки или вовсе не встречаются в обычных условиях в реках и озерах.

Содержание марганца в природных водоёмах

Самыми бедными в марганце считаются моря — 2 мкг/л, в реках содержание его больше — до 160 мкг/л, а вот подземные водохранилища и в этот раз являются рекордсменами — от 100 мкг до несколько мг/л.

Для марганца характерны сезонные колебания концентрации, как и у железа.

Выявлено множество факторов, которые влияют на уровень свободного марганца в растворе: связь рек и озер с подземными водохранилищами, наличие фотосинтезирующих организмов, аэробные условия, разложение биомассы (мертвые организмы и растения).

Немаловажная биохимическая роль этого элемента ведь он входит в группу микроэлементов. Многие процессы при дефиците марганца угнетаются. Он повышает интенсивность фотосинтеза, участвует в метаболизме азота, защищает клетки от негативного воздействия Fe(II) при этом окисляя его в трехвалентную форму.

Предельно-допустимая концентрация марганца для водной среды

ПДК марганца для водоёмов — 0,1 мг/л.

Медь (Cu)

Такой важной роли для живых организмов не имеет ни один микроэлемент! Медь — один из самых востребованных микроэлементов. Он входит в состав многих ферментов. Без него почти ничего не работает в живом организме: нарушается синтез протеинов, витаминов и жиров . Без него растения не могут размножаться. Всё-таки избыточное количество меди вызывает большие интоксикации во всех типов живых организмов.

Уровень меди в природных водоёмах

Хотя медь имеет две ионные формы, чаще всего в растворе встречается Cu(II). Обычно, соединения Cu(I) трудно растворимые в растворе (Cu 2 S, CuCl, Cu 2 O). Могут возникнуть разные акваионны меди при наличии всяких лигандов.

При сегодняшнем высоком употреблении меди в промышленности и сельское хозяйство, этот металл может послужить причиной загрязнения окружающей среды. Химические, металлургические заводы, шахты могут быть источниками сточных вод с большим содержанием меди. Процессы эрозии трубопроводов тоже имеют свои вклад в загрязнении медью. Самыми важными минералами с большим содержанием меди считаются малахит, борнит, халькопирит, халькозин, азурит, бронтантин.

Предельно-допустимая концентрация меди для водной среды

ПДК меди для водной среды считается 0,1 мг/л, в рыбохозяйственных прудах ПДК рыбхоз меди уменьшается до 0,001 мг/л.

Молибден (Mo)

Во время выщелачивания минералов с высоким содержанием молибдена, освобождаются разные соединения молибдена. Высокий уровень молибдена может замечаться в реках и озерах, которые находятся рядом с фабриками по обогащению и предприятиями занимающиеся цветной металлургией. Из-за разных процессов осаждения труднорастворимых соединений, адсорбции на поверхности разных пород, а также употребления водными водорослями и растениями, его количество может заметно уменьшится.

В основном в растворе, молибден может находиться в форме аниона MoO 4 2- . Есть вероятность присутствия молибденоорганических комплексов. Из-за того что при окисления молибденита формируются рыхлые мелкодисперсные соединения, повышается уровень коллоидального молибдена.

Содержание молибдена в природных водоёмах

Уровень молибдена в реках колеблется между 2,1 и 10,6 мкг/л. В морях и океанах его содержание — 10 мкг/л.

При малых концентрациях, молибден помогает нормальному развитию организма (так растительного, как и животного), ведь он входит в категорию микроэлементов. Также он является составной частью разных ферментов как ксантиноксилазы. При недостатке молибдена возникает дефицит этот фермента и таким образом могут проявляться отрицательные эффекты. Избыток этого элемента тоже не приветствуется, потому что нарушается нормальный обмен веществ.

Предельно-допустимая концентрация молибдена для водной среды

ПДК молибдена в поверхностных водоёмах должен не превышать 0,25 мг/л.

Мышьяк (As)

Загрязнены мышьяком в основном районы, которые находятся близко к минеральным рудников с высоким содержанием этого элемента (вольфрамовые, медно-кобальтовые, полиметаллические руды). Очень малое количество мышьяка может произойти при разложении живых организмов. Благодаря водным организмам, он может усваиваться этими. Интенсивное усваивание мышьяка из раствора замечается в период бурного развития планктона.

Важнейшими загрязнителями мышьяком считаются обогатительная промышленность, предприятия по производству пестицидов , красителей, а также сельское хозяйство.

Озера и реки содержат мышьяк в два состояния: во взвешенном и растворённом. Пропорции между этими формами может меняться в зависимости от рН раствора и химической композиции раствора. В растворённом состоянии, мышьяк может быть трехвалентном или пятивалентном, входя в анионные формы.

Уровень мышьяка в природных водоёмах

В реках, как правило, содержание мышьяка очень низкое (на уровне мкг/л), а в морях — в среднем 3 мкг/л. Некоторые минеральные воды могут содержать большие количества мышьяка (до несколько миллиграммов на литр).

Больше всего мышьяка могут, содержат подземные водохранилища — до несколько десяток миллиграммов на литр.

Его соединения очень токсичны для всех животных и для человека. В больших количествах, нарушаются процессы окисления и транспорт кислорода к клеткам.

Предельно-допустимая концентрация мышьяка для водной среды

ПДК мышьяка для водной среды — 50 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — тоже 50 мкг/л.

Никель (Ni)

На содержание никеля в озерах и реках влияют местные породы. Если рядом с водоёмом находятся месторождения никелевых и железно-никелевых руд концентрации могут быть и ещё больше нормального. Никель может поступить в озера и реки при разложении растениях и животных. Сине-зеленые водоросли содержат рекордные количества никеля по сравнению с другими растительными организмами. Важные отходные воды с высоким содержанием никеля освобождаются при производстве синтетического каучука, при процессах никелирования. Также никель в больших количествах освобождается во время сжигания угля, нефти.

Высокий рН может послужить причиной осаждения никеля в форме сульфатов, цианидов, карбонатов или гидроксидов. Живые организмы могут снизить уровень подвижного никеля, употребляя его. Важны и процессы адсорбции на поверхности пород.

Вода может содержать никель в растворённой, коллоидальной и взвешенной формах (баланс между этими состояниями зависит от рН среды, температуры и состава воды). Гидроксид железа, карбонат кальция, глина хорошо сорбируют соединения содержащие никель. Растворённый никель находится в виде комплексов с фульвовой и гуминовой кислот, а также с аминокислотами и цианидами. Самой стабильной ионной формой считается Ni 2+ . Ni 3+ , как правило, формируется при большом рН.

В середине 50ых годов никель был внесён в список микроэлементов, потому что он играет важную роль в разных процессах как катализатор. В низких дозах он имеет положительный эффект на кроветворные процессы. Большие дозы всё-таки очень опасны для здоровья, ведь никель — канцерогенный химический элемент и может спровоцировать разные заболевания дыхательной системы. Свободный Ni 2+ более токсичный, чем в форме комплексов (примерно в 2 раза).

Уровень никеля в природных водоёмах

Предельно-допустимая концентрация никеля для водной среды

ПДК никеля для водной среды — 0,1 мг/л, а вот в рыбохозяйственных прудах ПДК рыбхоз — 0,01 мг/л.

Олово (Sn)

Природными источниками олова являются минералы, которые содержат этот элемент (станнин, касситерит). Антропогенными источниками считаются заводы и фабрики по производству разных органических красок и металлургическая отрасль работающая с добавлением олова.

Олово — малотоксичный металл, вот почему употребляя пищу из металлических консервов мы не рискуем своим здоровьем.

Озера и реки содержат меньше микрограмма олова на литр воды. Подземные водохранилища могут содержать и несколько микрограммов олова на литр.

Предельно-допустимая концентрация олова для водной среды

ПДК олова для водной среды — 2 мг/л.

Ртуть (Hg)

Главным образом, повышенный уровень ртути в воде замечается в районах где есть месторождения ртути. Самые частые минералы — ливингстонит, киноварь, метациннабарит. Сточная вода с предприятий по производству разных лекарств, пестицидов, красителей может содержать важные количества ртути. Другим важным источником загрязнения ртутью считаются тепловые электростанции (которые используют как горючее уголь).

Его уровень в растворе уменьшается главным образом за счёт морских животных и растений, которые накапливают и даже концентрировать ртуть! Иногда содержание ртути в морских обитателей поднимается в несколько раз больше чем в морской среде.

Природная вода содержит ртуть в две формы: взвешенную (в виде сорбированных соединений) и растворённую (комплексные, минеральные соединения ртути). В определённых зонах океанов, ртуть может появляться в виде метилртутных комплексов.

Ртуть и его соединения очень токсичны. При больших концентрациях, имеет отрицательное действие на нервную систему, провоцирует изменения в крови, поражает секрецию пищеварительного тракта и двигательную функцию. Очень опасны продукты переработки ртути бактериями. Они могут синтезировать органические вещества на базе ртути, которые во много раз токсичнее неорганических соединений. При употреблении рыбы, соединения ртути могут попасть в наш организм.

Предельно-допустимая концентрация ртути для водной среды

ПДК ртути в обычной воде — 0,5 мкг/л, а в рыбохозяйственных прудах ПДК рыбхоз — меньше 0,1 мкг/л.

Свинец (Pb)

Реки и озера могут загрязняться свинцом натуральным путём при смывании минералов свинца (галенит, англезит, церуссит), так и антропогенным путём (сжигание угля, применение тетраэтилсвинца в топливе, сбросы фабрик по рудообогащению, сточные воды с шахт и металлургических заводов). Осаждение соединений свинца и адсорбция этих веществ на поверхности разных пород являются важнейшими натуральными методами понижения его уровня в растворе. Из биологических факторов, к уменьшению уровня свинца в растворе ведут гидробионты.

Свинец в реках и озерах находится во взвешенной и растворённой форме (минеральные и органоминеральные комплексы). Также свинец находится в виде нерастворимых веществ: сульфаты, карбонаты, сульфиды.

Содержание свинца в природных водоёмах

Про токсичность этого тяжелого металла мы наслышаны. Он — очень опасный даже при малых количествах и может стать причиной интоксикации. Проникновение свинца в организм осуществляется через дыхательную и пищеварительную систему. Его выделение из организма протекает очень медленно, и он способен накапливаться в почках, костях и печени.

Предельно-допустимая концентрация свинца для водной среды

ПДК свинца для водной среды — 0,03 мг/л, а в рыбохозяйственных прудах ПДК рыбхоз — 0,1 мг/л.

Тетраэтилсвинец

Он служит в качестве антидетонатора в моторном топливе. Таким образом, основными источниками загрязнения этим веществом — транспортные средства.

Это соединение — очень токсичное и может накапливаться в организме.

Предельно-допустимая концентрация тетраэтилсвинца для водной среды

Предельно-допустимый уровень этого вещества приближается к нулю.

Тетраэтилсвинец вообще не допускается в составе вод.

Серебро (Ag)

Серебро главным образом попадает в реки и озера из подземных водохранилищах и как следствие сброса сточных вод с предприятий (фотопредприятия, фабрики по обогащению) и рудников. Другим источником серебра могут быть альгицидные и бактерицидные средства.

В растворе, самые важные соединения являются галоидные соли серебра.

Содержание серебра в природных водоёмах

В чистых реках и озерах, содержание серебра — меньше микрограмма на литр, в морях — 0,3 мкг/л. Подземные водохранилища содержат до несколько десяток микрограммов на литр.

Серебро в ионной форме (при определённых концентрациях) имеет бактериостатический и бактерицидный эффект. Для того чтобы можно было стерилизовать воду при помощи серебра, его концентрация должна быть больше 2*10 -11 моль/л. Биологическая роль серебра в организм ещё недостаточно известна.

Предельно-допустимая концентрация серебра для водной среды

Предельно-допустимая серебра для водной среды — 0,05 мг/л.

Главный редактор и администратор сайта www.! //\\ Через меня проходят все опубликованные статьи на нашем сайте. //\\ Я модерирую и одобряю, чтобы читателю было интересно и полезно!


Современный уровень развития промышленных технологий не позволяет перейти к экологически чистому производству.Одним из наиболее распространенных загрязнителей окружающей среды являются ионы тяжелых металлов, в частности кадмий. Индустриальное загрязнение кадмием характерно для многих промышленных районов России. Кадмий способен адсорбироваться на твердых частицах и переноситься на большие расстояния.

Источниками большинства антропогенных загрязнений являются отходы от металлургических производств, со сточными водами гальванических производств (после кадмирования), других производств, в которых применяются кадмийсодержащие стабилизаторы, пигменты, краски и в результате использования фосфатных удобрений. Кадмий присутствует в воздухе крупных городов вследствие истирания шин, эрозии некоторых видов пластмассовых изделий, красок и клеящих материалов. Однако больше всего в окружающую среду кадмий поступает в виде побочного продукта металлургического производства (например, при выплавке и электролитической очистке цинка), а также при хранении и переработке бытовых и промышленных отходов. Даже в незагрязненных районах с содержанием кадмия в воздухе менее 1 мкг/м, его ежедневное поступление в организм человека при дыхании составляет около 1% от допустимой суточной дозы.

Дополнительным источником поступления кадмия в организм является курение. Одна сигарета содержит 1-2 мкг кадмия, и около 10% его поступает в органы дыхания. У лиц выкуривающих до 30 сигарет в день, за 40 лет в организме накапливается 13-52 мкг кадмия, что превышает его количество, поступающее с пищей.

В питьевую воду кадмий попадает вследствие загрязнения водоисточников производственными сбросами, с реагентами, используемыми на стадии водоподготовки, а также в результате миграции из водопроводных конструкций. Доля кадмия, поступающего в организм с водой, в общей суточной дозе составляет 5-10%. Среднесуточное потребление кадмия человеком составляет примерно 50 мкг с отдельными отклонениями в зависимости от индивидуальных и региональных особенностей. Предельно допустимая концентрация (ПДК) кадмия в атмосферном воздухе составляет 0,3 мкг/м, в воде водоисточников – 0,001мг/л, в почвах песчаных и супесчаных кислых и нейтральных 0,5, 1,0 и 2,0 мг/ кг соответственно.

Всемирной организацией здравоохранения (ВОЗ) установлен допустимый уровень содержания кадмия в организме 6,7- 8 мкг/кг. Обмен кадмия в организме характеризуется следующими основными особенностями: отсутствием эффективного механизма гомеостатического контроля; длительным удержанием (кумуляцией) в организме. На задержку кадмия в организме оказывает влияние возраст человека. У детей и подростков степень его всасывания в 5 раз выше, чем у взрослых. Выведение кадмия происходит медленно. Период его биологической полужизни в организме колеблется, по разным оценкам, в пределах 10-47 лет. От 50 до 75% кадмия от попавшего количества удерживается в организме. Основное количество кадмия из организма выводится с мочой (1-2 мкг /сут) и калом(10-50 мкг/сут).

Хроническое воздействие кадмия на человека приводит к нарушениям почечной функций легочной недостаточной, остёомаляций, анемий и потери обоняния. Существует данные о возможном канцерогенном эффекте кадмия и о вероятном участии его в развитии сердечно-сосудистых заболеваний. Наиболее тяжелой формой хронического отравления кадмием является болезнь “итай-итай” характеризующаяся деформацией скелета с заметным уменьшением роста, поясничными болями, болезненным явлениями в мышцах ног, утиной походкой. Кроме того, отмечаются частные переломы размягчённых костей, а также нарушение функций поджелудочной железы, изменения в желудочно-кишечном тракте, гипохромная анемия, дисфункция почек и др. Кадмий способен накапливаться в организме человека и животных, так как сравнительно легко усваивается из пищи и воды и проникает в различные органы и ткани. Токсическое действие металла проявляется уже при очень низких концентрациях. В современной научной литературе изучению токсического действия кадмия посвящено немало работ. Наиболее типичным проявлением отравления кадмием является нарушение процессов поглощения аминокислот, фосфора и кальция в почках. После прекращения действия кадмия повреждения, вызванные его действием в почках, остаются необратимыми. Показано, что нарушение процессов обмена в почках может привести к изменению минерального состава костей. Известно, что кадмий накапливается преимущественно в корковом слое почек, а его концентрация в мозговом слое и почечных лоханках значительно ниже, что связано с его способностью депонироваться в паренхиматозных органах и медленным выведением из организма.

Предположительно проявление токсического действия ионов кадмия связано синтезом в организме белка металиотеонеина, который связывает и транспортирует его в почки. Там белок почти полностью реадсорбируется и быстро деградирует с освобождением ионов кадмия, стимулирующих металлиотионеина в клетках эпителия проксимальных канальцев. Деградация комплекса кадмий-металлиотионеин приводит к повышению уровня ионов кадмия вначале в лизосомальной фракций, а затем в цитозоле, где происходит связывание с почечным металлиотионеином. При этом в клетках появляются везикулы, и повышается число электронно-плотных лизосом, появлением низкомолекулярной протеинурии и кальцийурией.

Роль белка металиотинеина в снижении токсичности кадмия весьма значительна. Экспериментальное внутривенное введение кадмия, связанного с данным белком, предотвращает развитие некроза в почечной ткани у мышей, тогда как аналогичные дозы неорганического кадмия вызывает развитие некроза в почках. Это доказывает участие металиотионеина в снижении токсичности металла. Однако этот механизм ограничен в количественном отношении, потому что при длительном поступлении кадмия также развивается повреждение тубулярного эпителия.

Многочисленными исследованиями была показана возможная связь между кадмийиндуцированным повреждением клеток почек, межклеточным изменением содержания ионов кадмия и индукцией синтеза стрессовых белков. Первым кандидатом на роль стрессового белка является кальмодулин, так как in vitro показано, что кадмий активирует секрецию этого гормона, который через усиление потока кальция в клетку может повреждать цитоскелет.

Кадмий вызывает развитие протеинурии, глюкозурии, аминоацидурии и другие патологические процессы. При длительном поступлении кадмия в организм развивается почечный тубулярный ацидоз, гиперкальцийурия и формируются камни в мочевом пузыре. В тяжелых случаях хронической кадмиевой интоксикации может также наблюдаться нефрокальцидоз. Накопление кадмия в клетках культуры почек происходит параллельно повышению степени его токсичности. Однако характер распределения его в клетке не зависит от выраженности цитотоксического действия: более 90% металла связано с цитозолем, остальная часть – микросомной, митохондриальной, ядерной фракциями и клеточными фрагментами.

Изучение субклеточного распределения кадмия в печени позволило расшифровать механизм возникновения толерантности к данному металлу. Установлено, что снижение чувствительности к кадмию обусловлено изменением его распределения не в тканях, а цитозольной субклеточной фракции печени, являющиеся органом – мишенью, где происходит связывание его с металиотионеином. В дозе 2,4 мг/кг кадмий снижает синтез белка в микросомальной фракции печени крыс, не нарушая его в ядрах и митохондриях. Накапливаясь на внутренних мембранах митохондрий, данный металл уменьшает энергоснабжение и стимулирует перекисное окисление липидов (ПОЛ) при концентрациях 10 – 100 мкмоль.

В первые сутки после введения кадмия в дозе 4 мг/кг в мышце сердца крыс по сравнению с контролем увеличились содержание диеновых коньюгантов в 2,1 раз, активность глутатионпероксидазы – на 3,2%. В коре больших полушарий головного мозга содержание шиффовых оснований возрастало в 2,2 раза. На седьмые сутки наблюдения у животных, получавших кадмий, концентрация шиффовых оснований в неокортексе оставалась повышенной на 59,3%, в сердце – увеличилось в 2,4 раза по сравнению с контролем; содержание коньюгантов в миокарде в дозе 1 мкмоль происходит нарушение целостности мембран митохондрий, но стимуляция ПОЛ не наблюдается.

При хроническом ингаляционном воздействии кадмий вызывает тяжелые поражения легких. Как показали проведенные Шоповой В. Л. с сотрудниками исследования, процент альвеолярных макрофагов (АМ) при воздействии кадмия в первый день значительно понижался (до 11,5%). Этот эффект наблюдался и на пятнадцатый день – АМ составил 45,5% от исходных значений. Одновременно резко повышался процент полиморфонуклеарных лейкоцитов (ПНЛ), среди некоторых встречались и незрелые формы. Средняя площадь АМ после химического воздействия увеличивалась за счет повышения процента очень крупных клеток, а не за счет равномерного увеличения площади всех клеток. При этом крупные АМ имели вакуолизированную пенистую цитоплазму. Встречались и клетки с пикнотическими ядрами, кариолизисом и кариорексисом. Все это указывает на то, что соединения кадмия существенно понижают содержание внутриклеточного АТФ и ингибируют клеточное дыхание.

В основе механизма токсического действия ионов тяжелых металлов, в том числе кадмия, лежит их взаимодействие с компонентами клеток, молекулами клеточных органелл и мембран.

Ионы металлов могут влиять на процессы, протекающие в клетке, только проникая внутрь ее и фиксируясь в субклеточных мембранах. Кадмий проникает в клетку через потенциал зависимые кальциевые канальцы. Воздействие кадмия на внутриклеточные процессы весьма разнообразны. Так, металл оказывает заметное влияние на обмен нуклеиновых кислот и белка. Он ингибирует in vivo включение тимидина в ДНК регенерирующей печени, угнетает синтез белка в печени крыс на стадии инициации трансляции, нарушая образования полирибосом, тогда как процесс элонгации, напротив, ускоряется в результате активирования факторов EF – 1 и EF – 2. Избыток ионов кадмия ингибирует синтез ДНК, белков и нуклеиновых кислот, влияет на активность ферментов, нарушает усвоение и обмен ряда микроэлементов (Zn, Cu, Se, Fe), что может вызывать их дефицит. Следует заметить, что при достаточном поступлении цинка в организм токсичность кадмия снижается.

С помощью электронной микроскопии было установлено, что кадмий вызывает ультраструктурные изменения клеточных мембран, митохондрий, цистерн аппарата Гольджи, сети трубочек, хроматина, ядрышка, микрофиламентов и рибосом.

Поражение клеточной оболочки является наиболее ранним признаком действия данного металла, особенно при длительном поступлении, хотя клетки могли переносить поражения клеточной оболочки, а также митохондрий и в некоторой степени – аппарата Гольджи.

При исследовании воздействия кадмия in vitro на митохондриальную мембрану выявили, что ионы кадмия повышают проницаемость мембраны к ионам H, K, Mg, а это приводит к активации дыхания энергизованных нефосфорилирующих митохондрий.

Известно, что некоторые ферменты в своей структуре имеют ионы металлов. Существует группа ферментов, в состав простетической части которых входят ионы металлов IV периода таблицы химических элементов, которые способны замещаться на любой двухвалентный ион металла (близкий по положению в таблице Д. И. Менделеева), в частности, к таким ферментам относятся щелочная фосфатаза и ряд протеаз. На основании проведенных экспериментов можно предположить, что в результате замещения ионов в простетической части фермента один на другой происходит изменение пространственной конфигурации активного центра фермента, что приводит к изменению уровня его активности.

Свое токсическое влияние кадмий оказывает и на репродуктивные функции организма. Эффект зависит от дозы вещества и времени воздействия. Основываясь на экспериментальных данных, полагают, что тератогенное действие кадмийсодержащих веществ может быть связано с ингибированием активности карбоангидразы. Так, воздействуя на ткани семенников, кадмий вызывает уменьшение синтеза тестостерона. Данный металл может приводить к гормональным нарушениям у самок, предотвращает оплодотворение, может вызывать кровотечения и даже приводить к смерти эмбрионов. Установлено также, что кадмий способен накапливаться в плаценте и вызывать ее повреждение. В исследованиях было выяснено влияние различных доз кадмия на эмбриональную смертность. Так, при введении металла в дозе 5 мг/кг впервые обнаруживаются мертвые эмбрионы, при 10 мг/кг наблюдается снижение средней массы плода, увеличение эмбриональной смертности в 2,8 раза, а при дозе 20 мг/кг – максимальное число мертвых эмбрионов на одно животное.

В литературе описано также отдаленное воздействие кадмия на развитие потомства. В частности, в результате введения самкам раствора кадмия во время беременности и в период лактации, у потомства, подвергавшегося действию металла в эмбриогенезе, наблюдались нейрохимические изменения в мозжечке и в полосатом теле, и изменения моторной активности во взрослом состоянии.

Таким образом, основываясь на литературных данных, можно отметить, что токсичность соединений кадмия следует рассматривать двояко. С одной стороны – это непосредственное действие ионов на организм. С другой стороны – влияние на потомство особей, подвергшихся действию соединений этого тяжелого металла.



Некоторые знакомые химфизики при упоминания кадмия сразу закатывают глаза - мол, страшная дрянь, непередаваемая.

Интересно разобраться.

Физиологическое действие

Соединения кадмия ядовиты. Особенно опасным случаем является вдыхание паров его оксида (CdO). Вдыхание в течение 1 минуты воздуха с содержанием 2,5 г/м3 окиси кадмия, или 30 секунд при концентрации 5 г/м3 является смертельным. Кадмий является канцерогеном .

В качестве первой помощи при остром кадмиевом отравлении рекомендуется свежий воздух, полный покой, предотвращение охлаждения. При раздражении дыхательных путей - тёплое молоко с содой, ингаляции 2 %-ным раствором NaHCO3. При упорном кашле - кодеин, дионин, горчичники на грудную клетку, необходима врачебная помощь. Противоядием при отравлении, вызванном приёмом внутрь кадмиевых солей, служит альбумин с карбонатом натрия.

Острая токсичность

Пары кадмия, все его соединения токсичны, что связано, в частности, с его способностью связывать серосодержащие ферменты и аминокислоты.

Симптомы острого отравления солями кадмия - рвота и судороги.

Хроническая токсичность

Кадмий - кумулятивный яд (способен накапливаться в организме).

Санитарно-экологические нормативы

В питьевой воде ПДК для кадмия 0,001 мг/дм³ (СанПиН 2.1.4.1074-01).

Вот кто бы сказал: это для кадмия в любом виде, в любых соединениях?

Механизм токсического действия

Механизм токсического действия кадмия заключается, по-видимому, в связывании карбоксильных, аминных и особенно сульфгидрильных групп белковых молекул, в результате чего угнетается активность ферментных систем. Растворимые соединения кадмия после всасывания в кровь поражают центральную нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Хроническое отравление приводит к анемии и разрушению костей.

Кадмий в норме в небольших количествах присутствуют в организме здорового человека. Кадмий легко накапливается в быстроразмножающихся клетках (например в опухолевых или половых). Он связывается с цитоплазматическим и ядерным материалом клеток и повреждает их. Он изменяет активность многих гормонов и ферментов. Это обусловлено его способностью связывать сульфгидрильные (-SH) группы.

И тут тоже вопрос: в норме в каких именно количествах содержится в организме, и в каком виде?

40 % производимого кадмия используется для нанесения антикоррозионных покрытий на металлы.

Около 20 % кадмия идет на изготовление кадмиевых электродов, применяемых в аккумуляторах (никель-кадмиевых и серебряно-кадмиевых), нормальных элементах Вестона, в резервных батареях (свинцово-кадмиевый элемент, ртутно-кадмиевый элемент) и др.

Около 20 % кадмия используется для производства неорганических красящих веществ (сульфиды и селениды, смешанные соли, например, сульфид кадмия - кадмий лимонный).

  • Иногда кадмий применяется в экспериментальной медицине.[источник не указан 226 дней]
  • Кадмий используется в гомеопатической медицине.
  • В последние годы кадмий стал применяться при создании новых противоопухолевых нано-медикаментов.[источник не указан 226 дней] В СССР в начале 1950-х годов были проведены первые успешные эксперименты, связанные с разработкой противоопухолевых медикаментов на основе соединений кадмия.
  • ...

    Используют кадмий для получения пигментов (~ 20%) и спец. припоев, полупроводниковых материалов, стабилизаторов (~ 10%) пластмасс (напр., поливинилхлорида) , как компонент антифрикционных, легкоплавких и ювелирных сплавов, для изготовления регулирующих и аварийных стержней ядерных реакторов.

    Пары кадмия и его соед. токсичны, причем кадмий может накапливаться в организме. Симптомы острого отравления солями кадмия рвота и судороги. Растворимые соед. кадмия после всасывания в кровь поражают центр. нервную систему, печень и почки, нарушают фосфорно-кальциевый обмен. Хронич. отравление приводит к анемии и разрушению костей. ПДК (рекомендованная) в сточных водах для солей 0,1 мг/л, в питьевой воде 0,01 мг/л.

    Тут ПДК (это по идее еше советские нормативы) даже для питьевой воды на порядок мягче - если не опечатка.

    1

    В работе отражены результаты мониторинга проб приземного слоя атмосферного воздуха на предмет содержания в нем тяжелых металлов в условиях урбанизированной среды Поволжья. Основными источниками техногенных тяжелых металлов в районе исследований являются промышленные предприятия и автотранспорт. Лабораторные элементные анализы проб производились методом пламенной атомно-абсорбционной спектрометрии. В результате проведения мониторинга выявлено превышение ПДК по ряду элементов: в г. Саратове – по свинцу, цинку, марганцу, меди; в г. Сердобске – по свинцу и кобальту; в г. Кузнецке – по свинцу, цинку и кобальту; в г. Камышине – по свинцу и цинку; в г. Волжском – по свинцу, кадмию и меди; в г. Инзе – по цинку; в г. Димитровграде – по ванадию, свинцу, цинку, меди. Требуются мероприятия по оздоровлению окружающей среды и, в частности, атмосферного воздуха.

    атмосферный воздух

    тяжелые металлы

    техногенное загрязнение

    1. Государственный доклад «О состоянии и об охране окружающей среды Российской Федерации в 2009 году». - М.: АНО «Центр международных проектов», 2010. - 523 с.

    2. ГОСТ 17.2.3.01-86. Охрана природы. Атмосфера. Правила контроля качества воздуха населенных пунктов. - М.: Изд-во стандартов, 1987. - 5 с.

    3. Другов Ю. С., Беликов А. Б., Дьякова Г. А., Тульчинский В. М. Методы анализа загрязнений воздуха. - М.: Химия, 1984. - 384 с.

    4. Израэль Ю. А. Экология и контроль состояния природной среды. - М.: Гидрометеоиздат, 1984. - 560 с.

    5. Израэль Ю. А. Экология и контроль состояния природной среды. - Л.: Гидрометеоиздат, 1989. - 375 с.

    6. РД 52.04.186-89. Руководство по контролю загрязнения атмосферы. - М.: Изд-во Госкомгидромета, 1991. - 237 с.

    7. Экологический мониторинг: метод. пособие / В. В. Снакин, М. А. Малярова, Т. Ф. Гурова и др. - М.: РЭФИА, 1996. - 92 с.

    Введение

    В последние десятилетия экологическая обстановка в регионах Поволжья значительно ухудшилась. В настоящее время в Саратовской, Пензенской, Волгоградской и Ульяновской областях состояние окружающей среды в пределах городов, где проживает более половины населения, характеризуется как кризисное и требующее действенных мер по оздоровлению. Особо выделяется в поволжских городах экологическая проблема загрязнения техногенными тяжелыми металлами атмосферного воздуха .

    На территории практически любого города распределение поллютантов, антропогенно выделяющихся в атмосферу, имеет свою специфику. Поллютанты, которые вместе с выбросами поступают в атмосферу на большой высоте над земной поверхностью (например, из высоких труб производственных объектов), распространяются на огромные расстояния воздушными массами. Эти выбросы в основном загрязняют территории, значительно удаленные от города.

    Тяжелые металлы, как известно, содержатся в приземном слое атмосферного воздуха: в 1,5-3,5 м над земной поверхностью. Они способны мигрировать и аккумулироваться в депонирующих средах: в почве, водной среде, в биомассе живых организмов.

    Тяжелые металлы в составе техногенных выбросов промышленных предприятий и автотранспорта составляют основную массу твердой фазы и находятся преимущественно в форме оксидов, сульфидов, карбонатов, гидратов и микроскопических капель (шариков) металлов. Удельная масса этих соединений (г/см 3) достаточно высокая: оксидов 5-6, сульфидов 4-4,5, карбонатов 3-4, металлов 7-8 .

    Цель исследований , проведенных в 2009-2011 гг., состояла в анализе среднегодового содержания тяжелых металлов в городах Поволжья - Балашове, Саратове (Саратовская область), Сердобске, Кузнецке (Пензенская область), Камышине, Волжском (Волгоградская область), Инзе, Димитровграде (Ульяновская область) - с разной степенью техногенного прессинга на окружающую среду.

    Материалы и методы исследования

    Отбор проб воздуха на высоте 2-2,5 м от земли осуществлялся электроаспиратором ПУ-2Э на передвижных постах (автомобиль с инструментарием) . В большинстве городов было заложено по 5 постов, за исключением крупных городов - Саратова и Волжского, в которых располагалось по 10 постов. На участках природных степных разнотравных экосистем (контроль) - в окрестностях с. Березовка и с. Пады Балашовского района Саратовской области - мониторинг проводился на 2 постах. Пробоотбор осуществлялся дискретно на передвижных постах утром (8.00 ч) и вечером (20.00 ч) в течение 3 дней в августе 2009-2011 гг.

    Лабораторный анализ проб воздухана предмет содержания в твердой фазе тяжелых металлов выполнен методом пламенной атомно-абсорбционной спектрометрии .

    Результаты исследования и их обсуждение

    Результаты мониторинга атмосферного воздуха в эталонной экосистеме (в контроле) представлены в табл. 1. Здесь ежегодно постоянно идентифицировались четыре техногенных тяжелых металла - Pb, Zn, Mn, Cu, аэротехногенными источниками которых были: движущийся по проселочным дорогам автотранспорт и деятельность сельскохозяйственных предприятий животноводческой и растениеводческой отраслей.

    Таблица 1 Содержание техногенных тяжелых металлов в атмосферном воздухе в контроле (2009-2011 гг.)

    В контроле концентрации данных элементов в атмосферном воздухе предельно-допустимых значений не превышали.

    В составе атмосферного воздуха г. Балашова (Саратовская область) ежегодно индентифицировались следующие поллютанты: Pb, Zn, Mn, Cu, Fe, Co, Cd. Из них пять (Pb, Zn, Mn, Cu, Fe) оказывали наиболее значимое влияние на качество воздуха (табл. 2). Эти поллютанты содержались в воздухе в количествах (мг/м 3), превышающих фоновые показатели, но не превышающих соответствующие им гигиенические нормативы (ПДК). Средние арифметические значения концентраций Pb, Zn, Mn и Cu в атмосферном воздухе г. Балашова оказались равными ПДК, что свидетельствует о начинающимся процессе ухудшения качества воздуха и деградации окружающей среды.

    Таблица 2г. Балашова (2009-2011 гг.)

    В атмосферном воздухе г. Саратова выявлено десять тяжелых металлов (Pb, Zn, Mn, Cu, Co, Cd, Fe, Mo, Ni, Hg), из них наиболее значимые следующие шесть элементов: Pb, Zn, Mn, Cu, Co, Cd. Первые четыре металла содержались в приземной атмосфере в количествах, превышающих ПДК в 9,0, 6,2, 3,7 и 2,9 раз соответственно. Данные величины свидетельствуют о весьма нестабильном экологическом состоянии атмосферного воздуха в пределах г. Саратова, что требует срочной реализации неотложных природоохранных мер (табл. 3).

    Таблица 3 Содержание техногенных тяжелых металлов в атмосферном воздухе г. Саратова (2009-2011 гг.)

    В г. Сердобске (Пензенская область) зарегистрированы следующие тяжелые металлы - загрязнители приземной атмосферы: V, Pb, Zn, Co, Cu, Cd, Ni, Mo, но наиболее существенное влияние оказывают первые шесть элементов. Из всех поллютантов лишь Pb (1 ПДК) и Co (1,3 ПДК) содержались в воздухе в больших объемах, что характеризует состояние воздуха как экологически нестабильное (табл. 4). При увеличении объемов неочищенных или недостаточно очищенных аэротехногенных выбросов в ближайшие годы уровень загрязнения воздушного бассейна в пределах г. Сердобска будет оцениваться как высокий.

    Таблица 4Содержание техногенных тяжелых металлов в атмосферном воздухе г. Сердобска (2009-2011 гг.)

    В пределах г. Кузнецка (Пензенская область) в связи с высокой загрязненностью воздушного бассейна сложилась напряженная экологическая ситуация. В химическом составе атмосферного воздуха выявлено восемь наименований техногенных тяжелых металлов: Fe, Pb, Zn, Co, Cr, Ni, из которых шесть содержались в воздухе практически постоянно. Концентрации Pb, Zn, Co значительно превышали ПДК в 2,2, 1,2 и 1,5 раз соответственно, что говорит о высоком уровне загрязнения воздуха (табл. 5).

    Таблица 5 Содержание техногенных тяжелых металлов в атмосферном воздухе г. Кузнецка (2009-2011 гг.)

    Состав атмосферного воздуха г. Камышина (Волгоградская область) включает следующие поллютанты: Pb, Zn, Cd, Cu, Sb, V, Cd. Периодически выявляется присутствие в воздухе первых пяти элементов из этого перечня. Концентрации остальных металлов составляют либо следовые значения, либо отсутствуют продолжительное время. По Pb и Zn, входящим в состав выхлопных газов автомобилей и выбросов все еще функционирующих промышленных предприятий, ежегодно регистрировались повышенные концентрации, превышающие ПДК в 1,4 и 1,3 раза соответственно для каждого из этих загрязнителей (табл. 6). В соответствии с этим экологическое состояние воздушного бассейна в пределах г. Камышина оценивается как нестабильное.

    Таблица 6Содержание техногенных тяжелых металлов в атмосферном воздухе г. Камышина (2009-2011 гг.)

    Основными ингредиентами атмосферного воздуха в границах г. Волжского (Волгоградская область) являются следующие тяжелые металлы: Pb, Zn, Cd, Cu, Ni, Cd, Co, Hg, Cr. Первые четыре элемента являются приоритетными поллютантами, загрязняющими объекты окружающей среды. Экологическая обстановка на территории города оценивается как напряженная, связанная с большими объемами промышленных выбросов и значительно возросших количеств автомобильных выхлопов, содержащих Pb, Cd, и Cu в достаточно высоких концентрациях: 5,4, 2,3 и 2,5 долей ПДК по данным экотоксикантам (табл. 7). Требуются срочные природоохранные мероприятия.

    Таблица 7Содержание техногенных тяжелых металлов в атмосферном воздухе г. Волжского (2009-2011 гг.)

    Состояние атмосферного воздуха г. Инзы (Ульяновская область) оценивается как повышено загрязненное, поскольку в его составе периодически регистрируются тяжелые металлы: V, Pb, Zn, Cr, Cd, Ni, Mo. Ежегодно отмечаются высокие концентрации у Pb, Zn и Cr в приземном слое воздуха, причем Zn в среднем содержится в количестве, в 1,2 раза превышающим ПДК (табл. 8). Состояние воздуха оценивается как повышенно загрязненное. Экологическая проблема атмосферного воздуха связана с ежегодно возрастающими концентрациями тяжелых металлов, приближающихся к ПДК и превышающих ее.

    Таблица 8Содержание техногенных тяжелых металлов в атмосферном воздухе г. Инзы (2009-2011 гг.)

    В составе приземного слоя атмосферного воздуха в пределах г. Димитровграда установлено содержание порядка восьми техногенных элементов: V, Pb, Zn, Cu, Cr, Ni, Cd, Hg. Максимальное токсическое действие на окружающую среду оказывают четыре тяжелых металла: V, Pb, Zn и Cu. Их средневзвешенное содержание превышает ПДК в 1,5, 2,0, 1,8 и 2,5 раза соответственно для каждого из этих поллютантов (табл. 9). Состояние воздушного бассейна в пределах г. Димитровграда характеризуется как кризисное, напряженное и требует мер по его улучшению.

    Таблица 9Содержание техногенных тяжелых металлов в атмосферном воздухе г. Димитровграда (2009-2011 гг.)

    Выводы

    Максимально загрязнен атмосферный воздух в городах с мощным техногенным воздействием на окружающую среду промышленностью и автотранспортом: в Саратове (уровень загрязнения воздуха - «очень высокий»), Кузнецке (уровень загрязнения воздуха - «высокий»), Волжском («высокий» уровень загрязнения воздуха), Димитровграде («высокий» уровень загрязнения воздуха).

    Рецензенты:

    • Любимов Валерий Борисович, д.б.н., профессор, зав. кафедрой экологии и рационального природопользования ФГБОУ ВПО «Брянский государственный университет имени академика И. Г. Петровского», г. Брянск.
    • Зайцева Елена Владимировна, д.б.н., профессор, зав. кафедрой зоологии и анатомии ФГБОУ ВПО «Брянский государственный университет имени академика И. Г. Петровского», г. Брянск.

    Библиографическая ссылка

    Ларионов М.В., Ларионов Н.В. СОДЕРЖАНИЕ ТЕХНОГЕННЫХ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПРИЗЕМНОМ СЛОЕ ВОЗДУХА УРБАНИЗИРОВАННЫХ ТЕРРИТОРИЙ ПОВОЛЖЬЯ // Современные проблемы науки и образования. – 2012. – № 2.;
    URL: http://science-education.ru/ru/article/view?id=6063 (дата обращения: 01.02.2020). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

    Охрана природы

    ПОЧВЫ

    Требования к свойствам осадков сточных вод
    при использовании их в качестве удобрений

    ГОССТАНДАРТ РОССИИ

    Москва

    Предисловие

    1 РАЗРАБОТАН ОАО «Научно-исследовательский институт коммунального водоснабжения и очистки воды»;

    Всероссийским научно-исследовательским и проектно-технологическим институтом органических удобрений;

    НИИ экологии человека и гигиены окружающей среды им. А. Н. Сысина РАМН;

    Научно-исследовательским институтом по сельскохозяйственному использованию сточных вод «Прогресс»;

    Всероссийским научно-исследовательским институтом удобрений и агропочвоведения им. Д.Н. Прянишникова

    ВНЕСЕН Техническим комитетом по стандартизации № 409 «Охрана окружающей природной среды»

    2 ПРИНЯТ И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 23 января 2001 г. № 30-ст

    3 В настоящем стандарте реализованы положения федеральных законов «Об отходах производства и потребления», «О санитарно-эпидемиологическом благополучии населения», «О безопасном обращении с пестицидами и агрохимикатами»

    4 ВВЕДЕН ВПЕРВЫЕ

    ГОСТ Р 17.4.3.07-2001

    ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

    Охрана природы

    ПОЧВЫ

    Требования к свойствам осадков сточных вод при использовании их в качестве удобрений

    Nature protection. Soils. Requirements for sewage sludge use for fertilization

    Дата введения 2001-10-01

    1 Область применения

    Настоящий стандарт устанавливает основные требования к свойствам осадков сточных вод при использовании их в качестве удобрений, а также требования к охране окружающей среды.

    Настоящий стандарт распространяется на осадки, образующиеся в процессе очистки хозяйственно-бытовых, городских (смеси хозяйственно-бытовых и производственных), а также близких к ним по составу производственных сточных вод и продукцию (удобрения) на основе осадков (далее - осадки).

    Стандарт не распространяется на осадки производственных предприятий (предприятия целлюлозно-бумажной, химической, в том числе производства синтетического каучука, химического волокна, химических средств защиты растений, нефтехимической и других отраслей промышленности), в сточных водах которых могут содержаться токсичные органические вещества первого и второго класса опасности в количествах, превышающих их предельно допустимые концентрации (ПДК) в воде водных объектов.

    Требования стандарта обязательны для коммунальных служб муниципальных и ведомственных предприятий и организаций, имеющих право поставлять и использовать осадки в качестве удобрений в сельском хозяйстве, промышленном цветоводстве, зеленом строительстве, в лесных и декоративных питомниках, а также для биологической рекультивации нарушенных земель и полигонов твердых бытовых отходов (ТБО).

    2 Нормативные ссылки

    В настоящем стандарте использованы ссылки на следующие стандарты:

    Охрана природы. Почвы. Классификация химических веществ для контроля загрязнений

    Охрана природы. Почвы. Номенклатура показателей санитарного состояния

    Охрана природы. Почвы. Общие требования к контролю и охране от загрязнений

    ГОСТ 26483-85 Почвы. Приготовление солевой вытяжки и определение ее рН по методу ЦИНАО

    ГОСТ 26714-85 Удобрения органические. Метод определения золы

    ГОСТ 26715-85 Удобрения органические. Методы определения общего азота

    ГОСТ 26717-85 Удобрения органические. Методы определения общего фосфора

    ГОСТ Р 8.563-96 Государственная система обеспечения единства измерений. Методики выполнения измерений

    3 Определения

    В настоящем стандарте применяются следующие термины с соответствующими определениями.

    осадки сточных вод: Твердая фракция сточных вод, состоящая из органических и минеральных веществ, выделенных в процессе очистки сточных вод методом отстаивания (сырой осадок), и комплекса микроорганизмов, участвовавших в процессе биологической очистки сточных вод и выведенных из технологического процесса (избыточный активный ил).

    продукция из осадков: Осадки, переработанные биотехнологическими (в том числе компостированием), физическими и химическими методами, отвечающие требованиям настоящего стандарта и имеющие товарный вид.

    тяжелые металлы: Группа металлов с атомной массой более 50 (Pb , Cd , Ni , Cr , Zn , Cu , Hg ), которые при определенных концентрациях могут оказывать токсичное действие.

    4 Требования к свойствам осадков

    4.1 Осадки, применяемые в качестве органических или комплексных органоминеральных удобрений, должны соответствовать требованиям, приведенным в .

    Таблица 1 - Агрохимические показатели осадков

    Норма

    Метод определения

    Массовая доля органических веществ, % на сухое вещество, не менее

    ГОСТ 26213

    Реакция среды (рН сол)

    5,5 - 8,5*

    ГОСТ 26483

    Массовая доля общего азота (N), % на сухое вещество, не менее

    0,6

    ГОСТ 26715

    Массовая доля общего фосфора (Р 2 О 5), % на сухое вещество, не менее

    1,5

    ГОСТ 26717

    * Осадки, имеющие значение реакции среды (рН сол вытяжки) более 8,5, могут использоваться на кислых почвах в качестве органоизвестковых удобрений.

    Таблица 2 - Допустимое валовое содержание тяжелых металлов и мышьяка в осадках

    Концентрация, мг/кг сухого вещества, не более, для осадков группы

    Свинец (Pb)

    250

    500

    Кадмий (Cd)

    Никель (Ni)

    200

    400

    Хром ( Cr общ )

    500

    1000

    Цинк (Zn)

    1750

    3500

    Медь ( Cu )

    750

    1500

    Ртуть (Hg)

    7,5

    Мышьяк (As)

    Норма для осадков группы

    Методика определения

    Бактерии группы кишечной палочки, клеток/г осадка фактической влажности

    100

    1000

    [ ]

    Патогенные микроорганизмы, в том числе сальмонеллы, клеток/г

    Отсутствие

    Отсутствие

    Яйца геогельминтов и цисты кишечных патогенных простейших, экз./кг осадка фактической влажности, не более

    Отсутствие

    Отсутствие

    [ ]

    4.2 Осадки могут использоваться в качестве удобрений при разном уровне влажности.

    4.3 По концентрации тяжелых металлов и мышьяка осадки при сельскохозяйственном использовании подразделяют на две группы () на основании результатов химического анализа по методам в соответствии с ГОСТ Р 8.563. Если содержание хотя бы одного из нормируемых элементов превышает его допустимый уровень для группы I, то осадки относят к группе II.

    4.3.1 Осадки группы I используют под все виды сельскохозяйственных культур, кроме овощных, грибов, зеленных и земляники.

    4.3.2 Осадки группы II используют под зерновые, зернобобовые, зернофуражные и технические культуры.

    4.4 Осадки групп I и II используют в промышленном цветоводстве, зеленом строительстве, лесных и декоративных питомниках, для биологической рекультивации нарушенных земель и полигонов ТБО.

    4.5 Дозы внесения осадков под сельскохозяйственные культуры в каждом конкретном случае рассчитывают с учетом фактического содержания нормируемых в загрязнений в осадках и в почве (на участке внесения осадка) (). При внесении осадков в расчетных дозах качество выращиваемой сельскохозяйственной продукции должно соответствовать требованиям .

    При возможном содержании в осадках ненормируемых настоящим стандартом тяжелых металлов и органических соединений, для которых разработаны ПДК в почвах, дозу внесения осадков также рассчитывают по .

    При несельскохозяйственном использовании осадков дозы внесения определяются технологиями выращивания культур и направлениями (технологиями) рекультивации.

    4.6 Осадки могут применяться на почвах и выработанных торфяниках. Применению осадков на почвах, в том числе подстилаемых песчаными отложениями и выработанных торфяниках с рН менее 5,5, предшествует их известкование. Осадки, прошедшие стадию обработки с использованием извести, применяют в качестве органоизвестковых удобрений почв с рН менее 5,5 в дозах, рассчитанных с учетом содержания кальция в составе вносимого осадка.

    4.7 Осадки, в которых нормируемые показатели превышают допустимые для группы II значения, но при этом по химическому составу соответствуют 4-му классу опасности, могут использоваться для восстановления продуктивности нарушенных земель с целью лесохозяйственного и рекреационного направления их рекультивации или подлежат размещению на специально обустроенных полигонах или полигонах ТБО .

    4.9 Порядок применения осадков в качестве удобрений определяет технологический регламент, который разрабатывают специализированные организации с учетом региональных и местных условий, в том числе свойств и гидрологического режима почв, содержания в осадках и почве нормируемых загрязнений, общего и минерального азота, фосфора, калия, особенностей возделывания культур, принятого севооборота и т.п.

    5 Требования к охране окружающей среды

    5.1 Применение осадков в качестве удобрений не должно приводить к ухудшению экологических и санитарно-гигиенических показателей окружающей среды, почвы, выращиваемых растений.

    5.2Не допускается применять осадки:

    в водоохранных зонах и зонах водных объектов и их прибрежных защитных полосах, а также в пределах особо охраняемых природных территорий;

    поверхностно в лесах, лесопарках, на сенокосах и пастбищах;

    на затопляемых и переувлажненных почвах;

    на территориях с резко пересеченным рельефом, а также на площадках, которые имеют уклон в сторону водоема более 3°.

    5.3 Контроль качества осадков обеспечивают аналитические лаборатории, аккредитацию которых организует и проводит Госстандарт России и другие федеральные органы исполнительной власти, на которые законодательными актами Российской Федерации возлагается эта работа в пределах их компетентности.

    5.4 При поставке осадков потребителю на отгружаемую партию поставщик предъявляет паспорт и сертификат соответствия, разрабатываемый органом, уполномоченным для проведения работ в данной области.

    5.5 Порядок контроля за содержанием в почве и выращиваемой сельскохозяйственной и другой продукции нормируемых загрязнений и санитарными показателями определяет технологический регламент .

    ПРИЛОЖЕНИЕ А
    (обязательное)

    Расчет допустимых доз внесения осадков при использовании их в качестве удобрений под сельскохозяйственные культуры

    А.1 Общую (суммарную) дозу внесения осадка по содержанию (нормируемых) загрязнений Д общ , т/га сухого вещества, вычисляют по формуле

    Максимально допустимую разовую дозу внесения осадка Д уд, т/га сухого вещества, вычисляют по формуле

    (2)

    Условные обозначения:

    ПДК - предельно допустимая концентрация нормируемого загрязнения в почве, мг/кг; при отсутствии утвержденных ПДК в расчете используется ориентировочно допустимая концентрация (ОДК) загрязнения в почве [ , ];

    Ф - фактическое содержание загрязнения в почве, мг/кг;

    с - концентрация загрязнения в осадке, мг/кг сухого вещества;

    т - масса пахотного слоя почвы в пересчете на сухое вещество, т/га.

    А.2 Расчет проводят по каждому нормируемому в или ненормируемому загрязнению отдельно. Из полученных данных выбирают минимальное значение, которое и определяет дозу конкретного осадка с учетом свойств почвы и ее фактического загрязнения.

    Количество минерального азота, вносимого с осадком, не должно превышать его вынос с урожаем культур.

    Внесение подвижного фосфора с осадками ограничивается емкостью поглощения фосфатов почвами.

    ПРИЛОЖЕНИЕ Б

    Библиография

    7 Ориентировочно допустимые концентрации (ОДК) тяжелых металлов и мышьяка в почвах: ГН 2.1.7.020-94 (Дополнение № 1 к перечню ПДК и ОДК № 6229-91). Утв. ГКС ЭН РФ 27.12.94

    Ключевые слова: осадки сточных вод, удобрения, допустимое содержание, тяжелые металлы, дозы внесения