Прогнозирование надежности на стадии проектирования. Прогнозирование надежности. Прогнозирование надежности с учетом предварительной информации Прогнозирование надежности

Как отмечалось выше по основным принципам расчета свойств, составляющих надежность, или комплексных показателей надежности объектов различают:

Методы прогнозирования,

Структурные методы расчета,

Физические методы расчета,

Методы прогнозирования основаны на использовании для оценки ожидаемого уровня надежности объекта данных о достигнутых значениях и выявленных тендециях измезнения показателей надежности объектов-аналогов. (Объекты-анагалоги – это объекты аналогичные или близкие к рассматриваемому по назначению, принципам действия, схем­но-конструктивному построению и технологии изготовления, элементной базе и применяемым мате­риалам, условиям и режимам эксплуатации, принципам и методам управления надежностью).

Структурные методы расчета основаны на представлении объекта в виде логической (структурно-функциональной) схемы, описывающей зависимость состояний и переходов объекта от состояний и переходов его элементов с учетом их взаимодействия и выполняемых ими функций в объекте с последующими описаниями построенной структурной модели адекватной мате­матической моделью и вычислением показателей адежности объекта по известным характеристикам надежности его эле­ментов.

Физические методы расчета основаны на применении математических моделей, описывают их физические, химические и иные процессы, приводящие к отказам объектов (к дости­жению объектами предельного состояния), и вычислении показателей надежности по известным параметрам (загруженнос­ти объекта, характеристикам примененных в объекте веществ и материалов с учетом особенностей его конструкции и техиолопей изготовления.

Методы расчета надежности конкретного объекта выбирают в зависимости от: - целей расчета и требовалий к точности определения показателей надежности объекта;

Наличия и/или возможности получения исходной информации, необходимой для применения определенного метода расчета;

Уровня отработанности конструкции и технологии изготовления объекта, системы его технического обслуживания и ремонта, позволяющего применять соответствующие расчетные модели надежности. При расчете надежности конкретных объектов возможно одновременное применение различных методой, например, методов прогнозирования надежности электронных и электротехнических элементов с последующим использованием полученных результатов в качестве исходных данных для расчета надежности объекта в целом или его составных частей различными структурными методами.

4.2.1. Методы прогнозирования надежности

Методы прогнозирования применяют:

Для обоснованпя требуемого уровня надежности объектов при раработке технических заданий и/или опенки вероятности достижения заданных показателей надежности при проработке технических предложений и анализе требований технического задания (контракта);

Для ориентировочной оценке ожндемого уровня надежностн объектов на ранних стадиях нх проектнрования, когла отсутствует необходимая информация для применения друтнх методов расчета надежности;

Для расчета интенсивности отказов серийно выпускаемых и новых электронных и зсзектротехннческих злементов разных типов с учетом уровня нх нагруженности, качества изготовления, областей применения аппаратуры, в которой используются элементы;

Для расчета параметров типовых задач и операций технического обслуживания и ремонта объектов с учетом конструктивных характеристик обьекта, определяющих его ремонтопригодность.

Для прогнозирования надежности объектов применяют:

Методы эвристического прогнозирования (экспертной оценки);

Мелолы прогнозирования по статистическим моделям;

Комбинированные методы.

Методы эвристического прогнозирования основаны на статистический обработке независимых оценок значений ожидаемых показателей надежности разрлбатываемого объкта (иидивидуалыных прогнозов), даваемых группой квалифицированных (экспертов) на основе предоставленной им информации об объекте, услониях евго эксплуатации, планируемой технологии изготвления и другнх данных, имеющихся в момент проведения оценки. Опрос экспертов и статистическую обработку индивидуальных прогнозов показателей надежности проводят общепринятыми при экспертной оценке любых показателей качества методами (например, метод Дельфи).

М ет о д ы п р о г н о з и р о в а н и я п о статистическим моделям основаны на экстра- или интерполяции зависимостей, описывающих выявленные тенденции изменения показателей надежности объектов-аналогов с учетом их конструктивно-технологических особенностей и других факторов, информация о которых для разрабатываемого объекта изнесгна или может быть получена в момент проведения оценки. Модели для прогнозирования строят по данным о показателях надежности и параметрах объектов-аналогов с использованием известных статистических методов (многофакторного регрессионного анализа, методов статистической классификации и распознания образов).

Комбинированные методы основаны на совместном применении для прогнозирования надежности методов прогнозирования по статистическим моделям и эвристических методов с последующим сравнением результатов. При этом эвристические методы используют для оценкеи возможности экстраполяции статистических моделей и уточнения прогноза по ним показателей надежности. Применение комбинированных методов целесообразно в случаях, когда естъ основания ожидать качественных изменений уровня належности объектов, не отражаемых соответствующими статистическими моделями, или при недостаточном для применения только статистичеких методов числе объектов-аналогов.

В статье рассматриваются вопросы прогнозирования показателей надежности современной бортовой аппаратуры космических аппаратов. Показана целесообразность использования результатов испытаний аппаратуры и ее элементов на стойкость к воздействию ионизирующих излучений для прогнозирования показателей надежности. Обоснована возможность применения альфараспределения времени наработки до отказа для прогнозирования показателей безотказности и долговечности КМОП ИС. Приведены расчетные соотношения для оценки вероятности безотказной работы, среднего времени наработки на отказ и минимальной наработки. Показаны возможные пути повышения стойкости современной бортовой аппаратуры космических аппаратов путем использования специализированных способов защиты от воздействий ионизирующих излучений космического пространства. Данное научное исследование (№14-05-0038) выполнено при поддержке Программы «Научный фонд НИУ ВШЭ» в 2014 г.

В работе предлагается методика расчета ограниченных орбит вокруг точки либрации L2 системы Солнце-Земля. Движение космического аппарата (КА) в окрестности точки либрации рассматривается как суперпозиция трех компонент: убывающей (устойчивой), возрастающей (неустойчивой) и ограниченной. Предлагаемая методика позволяет скорректировать вектор состояния КА, таким образом, чтобы нейтрализовать неустойчивую компоненту движения. На основе численных расчетов, выполненных с помощью данной методики, произведено исследование возможных типов орбит вокруг точки либрации, некоторых стратегий коррекции орбитального движения и возможностей одноимпульсного перелета на такие орбиты с низкой околоземной орбиты.

Любая аппаратура, как новая, так и старая, имеет свои экономические показатели. И их можно улучшить, если правильно определять ЗИП. При этом нет необходимости что-либо переделывать аппаратно. Достаточно под задаваемые к аппаратуре показатели правильно рассчитать ЗИП.

В материалах симпозиума «Надёжность и качество в приборостроении и радиоэлектронике» представлены тезисы докладов восьми секций:

Применение САПР для обеспечения высокой надежности изделий;

Математическое моделирование на ЭВМ физических процессов в проектируемых изделиях;

Автоматизированный анализ и обеспечение эффективности, качества и технического уровня сложных изделий и систем;

Методы прогнозирования и повышения надежности и качества изделий;

Обеспечение высокого качества и надежности изделий при производстве и эксплуатации;

Методы ускоренных испытаний;

Анализ причин отказов;

Физический подход к обеспечению надежности изделий.

Авдеев Д. К. , Егоров С. А. , Жаднов В. В. и др. В кн.: Радиовысотометрия - 2010: Сборник трудов Третьей Всероссийской научно-технической конференции. Екатеринбург: ООО «Форт Диалог-Исеть», 2010. С. 154-156.

Приводятся основные характеристики системы АСОНИКА-К-ЗИП и возможности ее применения для расчетов и оптимизации запасов в комплектах ЗИП электронных средств.

В сборнике представлены тезисы докладов Всесоюзной научно-технической конференции «Теория и практика конструирования и обеспечения надёжности и качества электронной аппаратуры и приборов».

М.: МИЭМ НИУ ВШЭ, 2016.

В материалах конференции студентов, аспирантов и молодых специалистов представлены тезисы докладов по следующим направлениям: математика и компьютерное моделирование; информационно-коммуникационные технологии; автоматизация проектирования, банки данных и знаний, интеллектуальные системы; компьютерные образовательные продукты; информационная безопасность; электроника и приборостроение; производственные технологии, нанотехнологии и новые материалы; информационные технологии в экономике, бизнесе и инновационной деятельности; инновационные технологии в дизайне. Материалы конференции могут быть полезны для преподавателей, студентов, научных сотрудников и специалистов, специализирующихся в области прикладной математики, информационно-коммуникационных технологий и электроники.

В настоящее время в астрономии и астрофизике наблюдается значительный рост объёмов экспериментальных данных. В данной работе рассматриваются крупные астрономические проекты с точки зрения передачи, хранения и обработки больших научных данных. Рассмотрена актуальность этих проблем в настоящее время и в будущем.

Екатеринбург: ООО «Форт Диалог-Исеть», 2010.

В сборник трудов включены доклады Третьей Всероссийской научно-технической конференции «Радиовысотометрия - 2010», проходившей с 19 по 21 октября 2010 года в городе Каменск-Уральский.

В сборнике трудов рассмотрены актуальные проблемы радиолокации земной поверхности, совершенствования бортовых радиоэлектронных систем, повышения их точности, надежности и качества цифровой обработки информации, математическое и физическое моделирование бортовых радиоэлектронных систем.

Оргкомитет выражает свою признательность промышленным и научным предприятиям, которые приняли самое непосредственное участие в организации и проведении конференции, и благодарит всех авторов за представленные материалы.

Оргкомитет планирует проведение Четвертой Всероссийской научно-технической конференции по радиовысотометрии в сентябре - октябре 2013 г.

Т. 2. М.: ЗАО "Издательский дом "Столичная энциклопедия", 2012.

В книгу включены материалы ведущих предприятий, организаций, учреждений радиоэлектронной отрасли об истории, современном состоянии и перспективах развития отечественной компонентной базы, использовании новейших технологий в создании совремнных изделий электронной техники, их технических и конструктивных особенностях.

Атлас содержит 8 карт, графики и таблицы, иллюстрирующие основные закономерности и ограничения в области утилизации твердых бытовых отходов в Центральном Федеральном округе. Социальная значимость Атласа состоит в выявлении и типологизации основных "ядер" антропогенного загрязнения, представленных полигонами и свалками ТБО.

Создание атласа осуществлялось при финансовой поддержке Русского Географического общества (грант РГО №59-2013/Н7 "Экологические риски в пригородных и межселенных территориях")

В препринте анализируются некоторые элементы и показатели электронного правительства в различных странах за 2009—2010 годы, и их взаимосвязь с коррупцией в государственном секторе. Широко признан тот факт, что коррупция является нежелательным явлением. При этом продолжаются дискуссии о том, какие из факторов, ее определяющих, наиболее значимы. Авторы исследуют возможную причинно-следственную зависимость установленной взаимосвязи между электронным правительством и коррупцией в государственном секторе. При помощи эконометрического анализа крупных страновых выборок, авторы проверили тесноту связи между индикаторами электронного правительства и показателями Индекса развития ИКТ, такими как качество онлайн-услуг и использование ИКТ, с одной стороны, и уровень восприятия коррупции, с другой стороны. Были проанализированы основные научные публикации, международные рейтинги и базы данных международных организаций. По результатам проведенного исследования предлагаются рекомендации по преодолению слабых сторон международных сопоставительных исследований электронного правительства, а также возможные направления дальнейших исследований в выделенной области.

В статье рассматриваются основы построения моделей измерительных приемников, предназначенных для виртуальных исследований в области ЭМС, в формах, отличных от схемной. Анализируются модели на основе цифровой обработки сигналов, формальные математические модели, а также базирующиеся на графическом программировании. Формулируется общий вывод о перспективах использования таких моделей при построении системы автоматизированного проектирования, реализующей процедуру виртуальной сертификации радиоэлектронных средств по эмиссии излучаемых радиопомех.

Кн. 2: Разработка моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры. М.: МИЭМ, 2010.

Излагаются результаты разработки моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры, полученные в ходе выполнения II этапа научно-исследовательской работы « Разработка методов и средств для проектных исследований надёжности радиоэлектронной аппаратуры » выполняемой в рамках тематического плана МИЭМ по теме № 100077 : « Разработка моделей надёжности для проектных исследований надёжности радиоэлектронной аппаратуры » .

Приводятся результаты разработки унифицированных топологических моделей надёжности резервированных групп. Описываются формальные модели типовых групп для нагруженного резервирования, для ненагруженного резервирования, для комбинированного контроля работоспособности, для групп с переключателями и групп с восстановлением. Проанализированы способы реализации γ-процентного контроля работоспособности РЭА и СЧ и даны рекомендации по модификации алгоритмов формирования временных диаграмм состояний типовых резервированных групп для различных способов контроля. Предложены методы формирования временных диаграмм состояний для восстанавливаемых резервированных групп для «последовательного» и «параллельного» соединения компонентов. Приводятся результаты экспериментальной проверки разработанных моделей и методов для проектных исследований надёжности РЭА.

Gokhberg L. , Fursov K. , Perani G. Working Party of National Experts on Science and Technology Indicators. DSTI/EAS/STP/NESTI. Organisation for Economic Co-operation and Development, 2012. No. DSTI/EAS/STP/NESTI(2012)9/ANN1.

Документ содержит проект методологических рекомендаций по статистическому измерению технологий. Он включает предложения по формированию операциональных определений технологий, подходы к идентификации классификации новых и возникающих технологий, а также предложения по разработке системы показателей, характеризующих жизненный цикл технологий, и стратегиям сбора данных. Разработанные рекомендации предлагается использовать в качестве методологической основы гармонизированной системы сбора и интерпретации статистических данных о технологиях. В приложении приводятся сведения о доступных определениях технологий и краткие результаты исследования опыта национальных статистических служб в области статистического наблюдения науки и технологий.

Для оценки приближения эмпирического распределения к теоретическому используется критерий согласия Романовского, который определяется по формуле:

где - критерий Пирсона;

r - число степеней свободы.

Если выполняется условие , то это дает основание для утверждения, о возможности принятия теоретического распределения показателей надежности за закон данного распределения.

Критерий Колмогорова позволяет оценить справедливость гипотезы о законе распределения при малых объемах наблюдений случайной величины

где D - максимальная разность между фактической и теоретической накопленными частотами случайной величины.

На основе специальных таблиц определяют вероятность Р того, что если конкретный вариационный признак распределен по рассматриваемому теоретическому распределению, то из-за чисто случайных причин максимальное расхождение между фактическими и теоретическими накопленными частотами будет не меньшим, чем фактически наблюдаемое.

На основе вычисленной величины Р делают выводы:

а) если вероятность Р достаточно велика, то гипотезу о том, что фактическое распределение близко к теоретическому, можно считать подтвержденной;

б) если же вероятность Р мала, то гипотеза отвергается.

Границы критической области для критерия Колмогорова зависят от объема выборки: чем меньше число результатов наблюдений, тем выше необходимо устанавливать критическое значение вероятности.

Если число отказов при наблюдении составило 10-15, то , если больше 100, то . Однако необходимо отметить, что при больших объемах наблюдений лучше пользоваться критерием Пирсона .

Критерий Колмогорова значительно проще других критериев согласия, поэтому он находит широкое применение в исследовании надежности машин и элементов.

Вопрос 22. Основные задачи прогнозирования надежности машин.

Для определения закономерностей изменения технического состояния машины в процессе работы выполняется прогнозирование надежности машин.

Различают три этапа прогнозирования: ретроспекцию, диагностику и прогноз. На первом этапе устанавливают динамику изменения параметров машины в прошлом, на втором этапе определяют техническое состояние элементов в настоящем, на третьем этапе прогнозируют изменение параметров состояния элементов в будущем.

Основные классы задач прогнозирования надежности машин могут быть сформулированы следующим образом:

    Предсказание закономерности изменения надежности машин в связи с перспективами развития производства, внедрением новых материалов, повышением прочности деталей.

    Оценка надежности проектируемой машины до того, как она будет изготовлена. Эта задача возникает на стадии проектирования.

    Прогнозирование надежности конкретной машины (узла, агрегата) на основании результатов изменения ее параметров.

    Прогнозирование надежности некоторой совокупности машин по результатам исследования ограниченного числа опытных образцов. С задачами такого типа приходится сталкиваться на этапе производства техники.

5. Прогнозирование надежности машин в необычных условиях эксплуатации (например, при температуре и влажности окружающей среды выше допустимой).

Специфика отрасли строительного машиностроения предполагает точность решения задач прогнозирования с погрешностью не более 10-15 % и использование методов прогнозирования, позволяющих получить решение задач в кратчайшие сроки.

Методы прогнозирования надежности машин выбирают с учетом задач прогнозирования, количества и качества исходной информации, характера реального процесса изменения показателя надежности (прогнозируемого параметра).

Современные методы прогнозирования могут быть разделены на три основные группы:

Методы экспертных оценок;

Методы моделирования, включающие физические, физико-математические и информационные модели;

Статистические методы.

Методы прогнозирования, основанные на экспертных оценках, заключаются в обобщении, статистической обработке и анализе мнений специалистов относительно перспектив развития данной области.

Методы моделирования базируются на основных положениях теории подобия. На основании подобия показателей модификации А, уровень надежности которой исследован ранее, и некоторых свойств модификации Б той же машины, прогнозируются показатели надежности Б на определенный период времени.

Статистические методы прогнозирования основаны на экстраполя­ции и интерполяции прогнозируемых параметров надежности, полученных в результате предварительных исследований. В основу метода положены законо­мерности изменения параметров надежности машин во времени.

Вопрос 23. Этапы прогнозирования надежности машин.

При прогнозировании надежности машин придерживаются следующей последовательности:

    Проводят классификация деталей и сборочных единиц по принципу ответственности. К деталям и сборочным единицам, отказы которых опасны для жизни людей, устанавливают более высокие требования безотказности.

    Формулируют понятия отказа деталей и сборочных единиц проектируемой системы. При этом необходимо учитывать только те детали и сборочные единицы, отказ которых приводит к полной или частичной утрате работоспособности системы.

3. Выбирают метод прогнозирования надежности в зависимости от этапа проектирования системы, точности исходных данных и принятых допущений.

    Составляют структурную схему изделия, включающую основные функциональные детали и сборочные единицы, в том числе детали и сборочные единицы силовых и кинематических цепей, расположенные по уровням в порядке их подчиненности, и отражающую связи между ними.

    Рассматривают все детали и сборочные единицы, начиная с верхнего уровня структурной схемы и кончая нижним, с подразделением их на следующие группы:

а) детали и сборочные единицы, показатели которых следует определять расчетными методами;

б) детали и сборочные единицы с заданными показателями надежности, включая назначенные параметры потока отказов;

в) детали и сборочные единицы, показатели надежности которых следует определять опытно-статистическими методами или методами испытаний.

6. Для деталей и сборочных единиц, надежность которых определяют расчетными методами:

Определяют спектры нагрузок и другие особенности эксплуатации, для чего составляют функциональные модели изделия и его сборочных единиц, которые, например, могут быть представлены матрицей состояний;

Составляют модели физических процессов, приводящих к отказам,

Устанавливают критерии отказов и предельных состояний (разрушение от кратковременных перегрузок, наступление предельного износа и др).

Классифицируют их на группы по критериям отказов и выбирают для каждой группы соответствующие методы расчета.

7. Строят при необходимости графики зависимости показателей надежности от времени, на основании которых сравнивают надежности отдельных деталей и сборочных единиц, а также различных вариантов структурных схем системы.

8. Hа основании проведенного прогнозирования надежности делают вывод о пригодности системы для применения по назначению. Если расчетная надежность окажется ниже заданной, разрабатывают мероприятия, направленные на повышение надежности рассчитываемой системы.

Вопрос 24. Прогнозирование надежности машин

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1. Методы прогнозирования

2. Схема прогноза параметрической надежности машины

3. Применение метода Монте-Карло для прогнозирования надежности

4. Возможности метода статистического моделирования

5. Оценка экстремальных ситуаций

Список использованной литературы

1. Методы прогнозирования

За последние годы прогнозирование поведения сложных систем развилось в самостоятельную науку, которая использует разнообразные методы и средства.

Прогнозирование отличается от расчета системы тем, что решается вероятностная задача, в которой поведение сложной системы в будущем определяется лишь с той или иной степенью достоверности и оценивается вероятность ее нахождения в определенном состоянии при различных условиях эксплуатации. Применительно к надежности задача прогнозирования сводится в основном к предсказанию вероятности безотказной работы изделия Р(t) в зависимости от возможных режимов работы и условий эксплуатации. Качество прогноза в большой степени зависит от источника информации о надежности отдельных элементов и о процессах потери ими работоспособности. Для прогнозирования в общем случае применяются разнообразные методы с использованием моделирования, аналитических расчетов, статистической информации, экспертных оценок, метода аналогий, теоретико-информационного и логического анализа и др.

Обычно прогнозирование, связанное с применением математического аппарата (элементы численного анализа и теории случайных функций), называется аналитическим. Специфика прогнозирования надежности заключается в том, что при оценке вероятности безотказной работы Р (t) эту функцию в общем случае нельзя экстраполировать. Если она определена на каком-то участке, то за его пределами ничего о функции Р (t) сказать нельзя. Поэтому основным методом для прогнозирования надежности сложных систем является оценка изменения его выходных параметров во времени при различных входных данных, на основании чего можно сделать вывод о показателях надежности при различных возможных ситуациях и методах эксплуатации данного изделия.

Нами будет рассмотрен тот случай прогнозирования параметрической надежности машины, когда известна структура формирования области работоспособности, но параметры, определяющие эту область, зависят от большого числа факторов и имеют рассеивание.

Рис. 1 Область прогнозирования надежности

2. Схема прогноза параметрической надежности машины

Рис. 2 Схема потери машиной работоспособности при заданной длительности непрерывной работы

Опираясь на общую схему потери машиной работоспособности (рис.2), можно представить три основных задачи по прогнозированию надежности (рис.1).

1.Прогнозируется поведение всей генеральной совокупности данных машин, т. е. учитывается как вариация исходных характеристик машины, так и возможных условий ее эксплуатации (область).

2.Прогнозируется поведение конкретного образца машины, т. е. начальные параметры машины становятся неслучайными величинами, а режимы и условия эксплуатации машины могут изменяться в определенном диапазоне. В этом случае область состояний сужается (область) и становится подмножеством множества.

3.Прогнозируется поведение данной машины в определенных условиях эксплуатации при постоянных режимах работы. В этом случае необходимо выявить реализацию случайного процесса, которая соответствует заданным условиям работы.

Таким образом, если в первых двух случаях необходимо предсказать возможную область существования выходных параметров и оценить вероятность их нахождения в каждой зоне данной области, то в третьем случае отсутствует неопределенность в условиях работы изделия, и прогноз связан лишь с выявлением тех закономерностей, которые описывают процесс изменения выходного параметра во времени.

Рис. 3 Процесс старения как случайная функция

Как известно (рис. 3), протекание случайного процесса может идти с большей или меньшей степенью «перемешивания» реализаций. Следует отметить, что если прогноз касается совокупности изделий, то степень перемешивания не влияет на оценку области существования параметров, так как выявляется не поведение данного изделия, а вероятность выхода за допустимые границы любого экземпляра из данной совокупности.

Если же прогнозируется поведение данного экземпляра изделия в пределах области, то следует оценить возможную скорость изменения процесса потери работоспособности в ближайший период времени, т. е. использовать корреляционную функцию.

Точность прогнозирования зависит от ряда факторов. Во-первых, от того, насколько принятая схема потери машиной работоспособности отражает объективную действительность. Во-вторых, насколько достоверны сведения о режимах и условиях предполагаемой работы изделия, а также о его начальных параметрах.

Наконец, на правильность прогноза решающее влияние оказывает достоверность информации о закономерностях изменения выходных параметров изделия в процессе эксплуатации, т. е. о случайных функциях X 1 (t); ...; Хn, (t). Информация о надежности изделия (понимая под этим оценку упомянутых функций Xi (t) или данные по надежности элементов изделия) может быть получена из разных источников. Прогнозирование может вестись на стадии проектирования (имеются ТУ на изделие, конструктивные данные о машине и ее элементах, известны возможные условия эксплуатации). При наличии опытного образца изделия (можно получить начальные характеристики машины, оценить запас надежности) и при эксплуатации (имеется информация о потере работоспособности изделий при различных условиях эксплуатации). При прогнозировании надежности изделия на стадии проектирования имеется наибольшая неопределенность (энтропия) в оценке возможных состояний изделия. Однако методический подход к решению этой задачи остается общим.

В рассматриваемом случае он заключается в использовании в качестве основы для оценки вероятности безотказной работы изделия соответствующих моделей отказов и состоит из следующих этапов.

1.Определение начальных параметров изделия (а о; а), как функции технологического процесса изготовления машины. Это связано с изменениями в пределах допуска размеров деталей, свойств материалов, качества сборки и других показателей. Значения начальных параметров могут зависеть также от режимов работы машины.

2.Установление предельно допустимых значений выходных параметров.

3.Оценка расчетным путем изменения выходных параметров в течение межналадочного периода То (в, н, с, а с) с учетом аналогичных характеристик у прототипа путем испытания при наличии опытного образца или путем учета установленных стандартом нормативов на параметры машины.

4.Оценка влияния процессов старения () на выходные параметры изделия на основании физических закономерностей отказов с учетом их стохастической природы.

5.Оценка спектров режимов работы (нагрузок, скоростей и условий эксплуатации), которые отражают возможные условия эксплуатации и определяют рассеивание скоростей изменения выходных параметров (х).

6.Расчет вероятности безотказной работы машины по каждому из параметров в функции времени.

7.При получении информации об эксплуатации изделия, для которого был сделан прогноз, производится сравнение действительных и расчетных данных и анализ причин их расхождения.

В зависимости от поставленной задачи должны быть выявлены области и (или) оценена реализация (рис. 1), т. е. получены законы распределения f (Т) или f (Т), или соответственно P (Т) или Р (Т), отражающие диапазоны рассеивания сроков службы для всей генеральной совокупности (D /) или для данной машины (D //). Если условия эксплуатации для данного образца жестко заданы, прогнозируется срок службы (наработка до отказа) Т.

3. Применение метода Монте-Карло для прогнозирования надежности

Рассмотренные в гл. 3 модели отказов являются формализованным описанием процесса потери машиной работоспособности и дают возможность установить функциональные связи между показателями надежности и исходными параметрами.

Статистическая природа этих закономерностей проявляется в том, что аргументы полученных функций являются случайными и зависят от большого числа факторов. Поэтому и нельзя точно предсказать поведение системы, а можно лишь определить вероятность того или иного ее состояния.

Для прогнозирования поведения сложной системы с успехом может применяться метод статистического моделирования (статистических испытаний), который получил название метода Монте-Карло (184).

Основная идея этого метода заключается в многократном расчете параметров по некоторой формализованной схеме, являющейся математическим описанием данного процесса (в нашем случае -- процесса потери работоспособности).

При этом для случайных параметров, входящих в формулы, перебираются наиболее вероятные их значения в соответствии с законами распределения.

Таким образом, каждое статистическое «испытание» заключается в выявлении одной из реализаций случайного процесса, так как подставляя, хотя и случайным образом, выбранные, но зафиксированные аргументы, получаем детерминированную зависимость, которая описывает данный процесс при принятых условиях. Многократно повторяя испытания по данной схеме (что практически возможно в сложных случаях лишь с применением ЭВМ), получим большое число реализаций случайного процесса, которое позволит оценить ход этого процесса и его основные параметры.

Рассмотрим упрощенную блок-схему алгоритма для расчета на ЭВМ надежности изделия, потеря работоспособности которого может быть описана схемой на рис. 4 и уравнением

Рис.4 Схема формирования постепенного отказа данного изделия

Пусть изменение выходного параметра X зависит от износа U одного из элементов изделия, т. е. X = F (U), где F -- известная функция, зависящая от конструктивной схемы изделия. Примем, что износ связан с удельным давлением р и скоростью скольжения трущейся пары v степенной зависимостью U=kp m 1 v m 2 t, где коэффициенты m1 и m2 известны (например, из испытания материалов пары). Коэффициент k оценивает износостойкость материалов и условия работы сопряжения (смазка, засоренность поверхностей).

Данное изделие может попасть в различные условия эксплуатации и работать при разных режимах. Для того чтобы предсказать ход процесса потери изделием работоспособности, надо знать вероятностную характеристику тех условий, в которых будет эксплуатироваться изделие. Такими характеристиками могут быть законы распределения нагрузок f (Р), скоростей f (v) и условий эксплуатации f (k). Заметим, что эти закономерности оценивают те условия, в которых будет находиться изделие и поэтому могут быть получены независимо от его конструкции с использованием статистики по работе аналогичных машин или по требованиям к будущим изделиям. Например, спектры нагрузок и скоростей при различных условиях работы транспортных машин, необходимые режимы резания при обработке данного типажа деталей на металлорежущих станках, нагрузки на узлы горнодобывающих машин при разработке различных пород и т. п. могут быть заранее определены в виде гистограмм или законов распределения.

Алгоритм для оценки надежности методом Монте-Карло (рис. 5) состоит из программы одного случайного испытания, по которой определяется конкретное значение скорости изменения параметра х. Данное испытание повторяется N раз (где N должно быть достаточно большим для получения достоверных статистических данных, например N? 50), и по результатам этих испытаний оценивается математическое ожидание ср и среднеквадратическое отклонение х случайного процесса, т. е. данные, необходимые для определения Р (t). Последовательность расчета (статистического испытания) следующая. После ввода необходимых данных (оператор /) производится выбор конкретных для данного испытания значений р, v и k (оператор 2). Для этого имеются подпрограммы, в которые заложены гистограммы или законы распределения, характеризующие данные значения или определяющие их величины. Например, вместо давлений на поверхности трения р может быть задан закон распределения внешних нагрузок Р, действующих на узел. В этом случае в подпрограмме по выбранному значению Р рассчитывается

р = F (Р),в простейшем случае,

где S -- поверхность трения.

Для выбора конкретного значения каждого из параметров с учетом их законов распределения применяется генератор случайных чисел, при помощи которого разыгрывается (выбирается) данное случайное число. Обычно генератор построен так, что выдает равномерно распределенные числа, которые с помощью стандартных подпрограмм могут быть преобразованы так, что их плотность распределения будет соответствовать данному закону. Например, для нормального закона распределения вырабатываются случайные числа г для математического ожидания М (z) = О и среднеквадратического отклонения z = 1. В подпрограмме для каждого случая применяется формула разыгрывания, которая учитывает характеристики заложенного распределения. Так, если р распределено по нормальному закону с параметрами р ср и р, то формула разыгрывания будет р= р ср + р z, где z получено с помощью генераторов случайных чисел. Возможно создание подпрограмм для разыгрывания случайных значений параметров при задании их распределения при помощи гистограмм. После получения случайных значений для каждого опыта рассчитывается скорость процесса повреждения (оператор 3) и по ней скорость процесса изменения параметра х (оператор 4). Данная процедура повторяется N раз и каждое полученное значение х засылается во внешнюю память машины. После накопления необходимого количества статистических данных, т. е. при n = N, производится определение ср и х (операторы 6 и 7), после чего возможен как расчет вероятности безотказной работы Р (Т) (оператор 8), так и построение гистограммы распределения х (или наработок до отказа Ti) и выдача на печать всех необходимых данных.

4. Возможности метод а статистического моделирования

Рассмотренный случай является простейшим, но иллюстрирует общий методический подход к решению данной задачи.

В более сложном случае, например при использовании модели отказа с учетом рассеивания начальных параметров (рис. 6), в программу закладываются сведения о законах распределения исходных характеристик машины.

По нормальному закону, а такие положительные величины, как погрешность эксцентриситета вала -- по закону Максвелла и т. п.

Рассмотренный на рис. 5 пример характерен также тем, что скорость процесса здесь постоянна х = const, и каждая реализация случайной функции характеризуется одним конкретным значением х.

Рис.6 Схема формирования отказа при рассеивании начальных параметров изделия.

Например, погрешности изготовления деталей обычно распределяются в пределах допуска.

по нормальному закону, а

такие положительные величины, как погрешность эксцентриситета вала -- по закону Максвелла и т. п.

Рассмотренный на рис. 5 пример характерен также тем, что скорость процесса здесь постоянна х = const, и каждая реализация случайной функции характеризуется одним конкретным значением х. Поэтому моделирование случайной функции здесь сведено к моделированию случайной величины.

Если рассматривать нелинейную задачу, когда скорость процесса изменяется во времени (t), то каждое испытание даст реализацию случайной функции. Для дальнейших действий каждую реализацию можно представить в виде чисел в данных сечениях t 1 ;t 2 …t n , охватывающих исследуемый диапазон работоспособности изделия.

Часто случайную функцию удобно представить в виде ее канонического разложения

В этом случае случайными будут коэффициенты при неслучайных функциях

Выработка реализаций случайной функции на ЭВЦМ упрощается в случае ее стационарности.

Еще более сложные случаи могут иметь место, если существует связь между смежными значениями случайных параметров. Тогда необходимо учитывать коэффициент корреляции между смежными членами или даже несколькими соседними членами (множественная корреляционная связь). Такой случай также может быть решен методом Монте-Карло, но требуется моделирование корреляционной функции.

Следует также отметить, что данный метод применим и для закономерностей, характеризующих процесс в виде неявных функций, а также при описании процесса не обязательно в виде математических формул. Прогнозирование надежности методом Монте-Карло позволяет вскрыть статистическую природу процесса потери изделием работоспособности и оценить удельный вес влияния отдельных факторов. Например, для рассмотренной задачи можно сделать расчет, насколько повысится вероятность безотказной работы, если проведен ряд мероприятий по уменьшению давлений в зоне трения (изменена конструкция узла), уменьшено значение коэффициента k (применен новый материал), сужен диапазон режимов работы машины [изменены параметры законов f (Р) и f (v)].

Специфика применения метода статистического моделирования для расчета надежности заключается в том, что если обычно при статистическом моделировании сложных систем искомыми величинами являются средние значения характеристик, то здесь нас интересует область крайних реализаций (значений близких к max), так как именно они определяют значения Р (Т) .

Поэтому для оценки надежности ответственных изделий важное значение приобретает исследование аварийных и экстремальных ситуаций, когда выявляются реализации процесса с наибольшей скоростью изменения выходных параметров х max.

5. Оценка экстремальных ситуаций

При прогнозировании надежности особое значение приобретает выявление крайней границы области состояний изделия, так как именно она определяет его близость к отказу. Эта граница формируется за счет реализаций, которые имеют наибольшие значения скорости процесса х. Хотя вероятность их появления мала (она соответствует вероятности отказа), их роль в оценке надежности изделия является основной. Такие реализации будем называть экстремальными. Они могут быть двух типов: собственно экстремальные, как следствие наиболее неблагоприятного сочетания внешних факторов, но находящихся в допустимых пределах, и аварийные, которые связаны с нарушением условий эксплуатации или проявлением нарушений ТУ при изготовлении изделия.

Экстремальная реализация IV на рис. 1 может быть выявлена как результат наиболее неблагоприятного сочетания факторов, влияющих на скорость изменения параметров 7л Часто это предельные режимы, при которых существенно возрастают динамические нагрузки. Если для простых систем формулирование экстремальных условий, как правило, не вызывает трудностей (это наибольшие нагрузки, скорости, температуры), то для сложных систем необходимо провести исследования по выявлению такого сочетания параметров, которое приведет к х max Действительно, например, повышение скорости механизма для одних элементов может привести к повышению их работоспособности (переход к жидкостному трению в подшипнике скольжения, лучшая циркуляция охлаждающей жидкости, выход механизма из резонансной зоны и т. п.), а для других -- к ухудшению условий их работы (рост динамических нагрузок, повышение тепловыделения и т. п.). Поэтому суммарное воздействие на механизм будет наибольшим лишь при определенных режимах его работы. Если требуется выявить наихудшее начальное состояние изделия, то также необходимо решить задачу о наиболее неблагоприятном распределении допусков (ТУ) на элементы и оценить вероятность этой ситуации (например, нахождение для всех деталей размеров на границах полей допусков маловероятно).

Кроме того, при оценке надежности изделия с учетом всех его основных параметров X 1 , Х 2 , ..., Х n режимы по-разному отразятся на их изменении, что исключает возможность предопределения заранее наихудшего их сочетания. Все это свидетельствует о том, что выявление экстремальных ситуаций также является задачей статистического исследования, которое может быть проведено с применением метода Монте-Карло. Однако разыгрывание должно вестись в области, соответствующей малой вероятности отказа, но при допустимых значениях входных параметров (значений случайных аргументов).

Аварийные ситуации связаны с двумя основными причинами. Во-первых, это возрастание внешних нагрузок и воздействий за пределами установленными ТУ при попадании машины в недопустимые условия эксплуатации. Для отдельных узлов и элементов машины такое положение может возникнуть из-за повреждения соседних малоответственных деталей, что повлияет на работу данного узла. Например, повышенный износ неответственного соединения не влияет сам по себе на работоспособность этой пары, но продукты износа засоряют смазку и выводят из строя другие сопряжения. Повышенное тепловыделение может привести к недопустимым деформациям соседних элементов.

Во-вторых, возникновение аварийных ситуаций связано с нарушением ТУ на изготовление и сборку изделий. Производственные дефекты могут проявиться неожиданно и привести к отказу изделия.

Если вероятность появления экстремальных ситуаций можно оценить, то возникновение аварийного состояния предсказать трудно, а в большинстве случаев практически невозможно. Обычно удается составить перечень типичных аварийных ситуаций, доказать, что вероятность их возникновения чрезвычайно мала (если это не так, надо изменять конструкцию) и, главное, оценить возможные последствия каждой ситуации. Оценка характера последствий и времени, необходимого для ликвидации возникшей ситуации, определяет степень опасности данной аварийной ситуации.

Таким образом, прогноз области возможных состояний изделия и его показателей надежности для высокоответственных объектов дополняется анализом аварийных и экстремальных ситуаций с оценкой их последствий.

В заключение следует отметить, что разработка методов прогнозирования надежности машин даст огромный экономический эффект, так как, во-первых, сократятся затраты времени и средств на испытание опытных образцов, во-вторых, будет иметь место более рациональное использование потенциальной долговечности изделия за счет правильного построения системы ремонта и эксплуатации, в-третьих, еще на стадии проектирования будет возможен выбор оптимального с точки зрения надежности конструктивного решения.

Список использованной литературы :

1. Проников А.С. Надежность машин Москва «Машиностроение» 1978 г

2. Бусленко Н.П. Моделирование сложных систем М.; «Наука» 1969 г.

3. Елизаветин М.А. Повышение надежности машин М.; «Машиностроение» 1973г.

Подобные документы

    Описание конструкции компрессора газотурбинного двигателя. Расчет вероятности безотказной работы лопатки и диска рабочего колеса входной ступени дозвукового осевого компрессора. Расчет надежности лопатки компрессора при повторно-статических нагружениях.

    курсовая работа , добавлен 18.03.2012

    Построение эмпирической вероятности безотказной работы. Определение параметров распределения итерационным методом. Рассмотрение количественных характеристик каждого фактора в отдельности. Определение средней наработки до первого отказа устройства.

    отчет по практике , добавлен 13.12.2017

    Краткое описание конструкции двигателя. Нормирование уровня надежности лопатки турбины. Определение среднего времени безотказной работы. Расчет надежности турбины при повторно-статических нагружениях и надежности деталей с учетом длительной прочности.

    курсовая работа , добавлен 18.03.2012

    Назначение, классификация и обоснование выбора горной машины в зависимости от условий работы. Статический расчет технологических параметров работы машины. Устройство, принцип работы, эксплуатация механического оборудования и привода. Механизм подъема.

    курсовая работа , добавлен 08.11.2011

    Требования, предъявляемые к надежности изделия. Анализ надежности дублированных систем. Вероятность безотказной работы по заданному критерию. Распределение отказов по времени. Основы расчета резьбовых и болтовых соединений при постоянной нагрузке.

    контрольная работа , добавлен 09.11.2011

    Государственные стандарты по проблеме надежности энергетических объектов при эксплуатации. Изменение интенсивности отказов при увеличении наработки объекта. Вероятность безотказной работы. Показатели долговечности и модель гамма-процентного ресурса.

    презентация , добавлен 15.04.2014

    Понятия теории надежности. Вероятность безотказной работы. Показатели частоты отказов. Методы повышения надежности техники. Случаи возникновения отказов, сохранность работоспособности оборудования. Критерии и количественные характеристики его оценки.

    курсовая работа , добавлен 28.04.2014

    Анализ изменения вероятности безотказной работы системы от времени наработки. Понятие процентной наработки технической системы, особенности обеспечения ее увеличения за счет повышения надежности элементов и структурного резервирования элементов системы.

    контрольная работа , добавлен 16.04.2010

    Показатели надежности систем. Классификация отказов комплекса технических средств. Вероятность восстановления их работоспособного состояния. Анализ условий работы автоматических систем. Методы повышения их надежности при проектировании и эксплуатации.

    реферат , добавлен 02.04.2015

    Структурная схема надежности технической системы. График изменения вероятности безотказной работы системы от времени наработки до уровня 0,1-0,2. 2. Определение Y-процентной наработки технической системы.

Согласно работе "прогноз определяется как вероятностное научно обоснованное суждение о перспективах, возможных состояниях того или иного явления в будущем и (или) об альтернативных путях и сроках их осуществления".

По оценкам отечественных и зарубежных специалистов в настоящее время насчитывается более 150 методов прогнозирования, но число основных методов, повторяющихся в различных вариациях, во много раз меньше. Считают, что указанные методы базируются на двух крайних подходах: эвристическом и математическом.

Применительно к механическим системам, в частности, к автомобилям, методы прогнозирования при оценке показателей надежности начали применяться сравнительно недавно. Так, для нормирования пробегов новых конструкций L H рекомендована зависимость

где L C , σ c - средние значение и квадратическое отклонение ресурса серийной машины в эксплуатации.

Если увязать L c с календарным временем Т, то приходим практически к временному ряду L (или L H) в функции от Т.

В работе дана методика прогнозирования ресурсов агрегатов с использованием временных рядов и приведены конкретные примеры прогноза ресурсов двигателей. Применительно к автомобильному транспорту разработаны методы прогнозирования и управления технической эксплуатацией и надежность автомобилей . В частности, в работе рассмотрена система непрерывного прогноза оценки удельного уровня трудоемкости технического обслуживания и текущего ремонта, учитывающая связь краткосрочного, среднесрочного и долгосрочного прогнозов; даны конкретные примеры прогнозов указанных величин для грузовых автомобилей, автобусов и легковых автомобилей; рассмотрены основные аспекты принятия решений в условиях риска и неопределенности, основанные на байесовском подходе, теории игр и статистических решений.

Широкое распространение методы прогнозирования получили при оценке остаточного ресурса . В общем случае речь идет об аппроксимации индивидуальной реализации, связанной, например, с износом (или накопленным повреждением) аналитической зависимостью, параметры которой определяются по результатам диагностирования на предпрогнозном периоде с последующей экстраполяцией на интервале упреждения (прогноза) до достижения предельного состояния.

В ряде работ рассматриваются вопросы, связанные с прогнозированием (расчетом) параметров нагрузочных режимов агрегатов и деталей, необходимых для оценки статической прочности и усталостной долговечности при проектировании . Как правило, предлагаемые методы основываются на обобщении экспериментальных данных по нагрузочным режимам машин-аналогов или моделировании с использованием ЭВМ, но не предусматривают введения временного тренда. Поэтому прогноз осуществляется с помощью подстановки в расчетные зависимости конструктивных параметров проектируемой машины.

Теоретические и прикладные разработки в области прогнозирования надежности механических систем достаточно подробно освещены в ряде работ [...]. Порядок прогнозирования при использовании расчетных методов в общем случае предусматривает представление структуры изделия в виде иерархической системы "деталь - сборочная единица-изделие"; определение спектров нагрузок; формирование моделей физических нагрузок, приводящих к отказу; установление критериев отказов и предельных состояний; определение численных значений показателей надежности; оценку достоверности прогноза; корректирование показателей надежности с использованием результатов прогноза. Однако применение вышеизложенных положений для конкретных прогнозов затруднительно и это связано не только со спецификой изделий различных отраслей машиностроения, но и с недостаточной изученностью и неоднозначностью трактовки таких понятий, как классификация объекта прогноза, многовариантность и синтез прогнозов, процедуры принятия решений на основе прогнозной (априорной) информации и др. Поэтому целесообразно подробнее остановится на вопросах расчета показателей надежности механических систем при проектировании с точки зрения теории прогнозирования.

Под методологией прогнозирования понимается область знаний о методах, способах и системах прогнозирования . В соответствии с упомянутой работой и приведенной в ней терминологией под методом прогнозирования будем понимать способ исследования объекта прогнозирования, направленный на разработку прогноза, под методикой - совокупность одного или нескольких методов, наконец, под системой прогнозирования - упорядоченную совокупность методик и средств их реализации.

Теория прогнозирования включает в себя анализ объекта прогнозирования, в частности классификацию; методы прогнозирования, подразделяющиеся на формализованные (математические) и интуитивные (экспертные); системы прогнозирования, в том числе непрерывного, при котором за счет обратной связи осуществляется корректировка прогнозов в процессе функционирования объекта.

В соответствии с работами объекты прогнозирования классифицируются:

по природе (научно-технические, технико-экономические и т. д.);

по масштабности - в зависимости от числа значащих переменных, входящих в описание объекта, различают сублокальные (1-3 переменных), локальные (4-14), субглобальные (15-35), глобальные (36-100) и суперглобальные (свыше 100 переменных);

по сложности - в зависимости от степени взаимосвязанности переменных подразделяют на сверхпростые (отсутствие взаимосвязи), простые (наличие парных взаимосвязей), сложные (наличие взаимосвязи и взаимовлияния) и сверхсложные (необходимость учета взаимосвязи);

по степени детерминированности (детерминированные" стохастические и смешанные);

по характеру развития во времени регулярной составляющей процесса (тренда) - дискретные, апериодические и периодические;

по информационной обеспеченности периода ретроспекции - рассматривают объекты с полным количественным обеспечением, с неполным количественным обеспечением, с наличием качественной информации (и частично количественной), с полным отсутствием ретроспективной информации.

Прогнозирование показателей надежности механических систем, на наш взгляд, следует рассматривать в узком и широком смысле.

В узком смысле прогнозирование включает определение показателей надежности как характеристик, развернутых во времени; считается, что основные исходные данные - вид конструкции, материалы и технология изготовления деталей, нагрузочные режимы, условия эксплуатации, периодичности и объемы ТО и ремонтов, цены на детали и др. - заданы. Другими словами, прогнозирование в узком смысле производится после проверочного расчета. Помимо этого, накоплены определенные статистические данные о ресурсах деталей и агрегатов, т. е. предполагается, что имеется ретроспективная информация, которая может быть использована для экстраполяции, адаптации вероятностно-статистических моделей и т. п. Очевидно, в этом случае методы прогнозирования показателей надежности включают как основные или верифицируемые варианты различные виды расчетов показателей надежности при проектировании, основанные на физических моделях отказов.

В широком смысле прогнозирование подразумевает, что исходные данные для получения оценок надежности определяются с использованием опережающих методов прогнозирования (патентный, публикациониый и др.). Например, на основе опережающих методов прогнозируются параметры кривой износа, с помощью которой прогнозируются показатели надежности. Следовательно, в широком смысле прогнозирование показателей надежности разбивается на два этапа: первый - прогноз исходных данных; второй - собственно прогноз показателей надежности.

Трудность оценки надежности возрастает многократно при создании новых конструкций, материалов и т. д., по которым отсутствует количественная информация. Поскольку при получении информации о результатах различных испытаний происходит уточнение исходных данных, ресурсов и т. п., то прогнозирование может быть осуществлено только в виде непрерывной прогнозирующей системы.

В предложенной книге основное внимание уделено разработке методологии прогнозирования показателей надежности в узком смысле.

Рассмотрим объект прогноза - показатели надежности (ПН) деталей и агрегатов автомобиля - с точки зрения рассмотренной выше классификации. Очевидно, по природе ПН следует отнести к классу научно-технических прогнозов, включающих наряду с новыми видами техники, новыми материалами и прогноз технических характеристик. Для оценки масштабности и сложности объекта прогнозирования составим табл. 1.7, в которую включим основные показатели надежности (см. табл. 1.3) и модели расчета, рассмотренные в п. 1.2. Несмотря на условный характер классификации, из табл. 1.7 видно, что по масштабности и сложности показатели надежности агрегатов и автомобиля следует отнести к глобальным (суперглобальным) и сложным (сверхсложным).

По степени детерминированности оценки ПН являются стохастическими, при этом следует обратить внимание, что при расчете показателей надежности элементов деталей, т. е. на низшем уровне, мы сталкиваемся с так называемой природной неопределенностью, когда невозможно дать точную оценку показателя, например среднего ресурса, из-за недостаточной изученности объекта.

По характеру развития ПН классифицировать трудно. Так, на уровне расчетных моделей на износ реализации его могут быть представлены апериодическими зависимостями, тогда как в расчетах на усталость нагрузочные режимы - это случайные не-стационарные процессы. В то же время, рассматривая ретроспективную нормативную информацию о ресурсах автомобилей до капитального ремонта, можно сказать, что в зависимости от времени выпуска (или существенной модернизации) назначаемый заводом ресурс изменяется дискретно.

Наконец объект прогнозирования с точки зрения информационной обеспеченности полностью отвечает введенному ранее понятию прогнозирования надежности механических систем в узком и широком смысле.

Таким образом, оценки показателей надежности деталей и агрегатов автомобиля соответствуют принципам классификации объектов прогнозирования.

Математические формализованные методы прогнозирования подразделяют на симплексные (простые), статистические и комбинированные. Основу симплексных методов составляют экстраполяции по временным рядам (метод наименьших квадратов, экспоненциального сглаживания и другие). Статистические методы включают корреляционный и регрессионный анализ, метод группового учета аргументов, факторный анализ. Под комбинированным методом подразумевается синтез вариантов прогнозов, выполненных о использованием математических и эвристических методов.

Следует обратить внимание на отличие прогнозных оценок при использовании общих методов прогнозирования и при оценке показателей надежности. Так, прогноз в общем случае представляется в виде точечной и интервальной оценок. При прогнозировании надежности, например, ресурса деталей его средняя величина совпадает с точечным прогнозом, но для перехода к другим показателям интервальной оценки недостаточно, т. к. необходимо знать плотность распределения ресурсов.

Учитывая, что при прогнозировании ПН на ранних стадиях проектирования нет возможности проведения экспериментов с целью раскрытия "природной" неопределенности, возможный путь решения сводится к разработке нескольких прогнозных методов с целью использования их в комбинированнном прогнозе. Поэтому указанные математические методы должны быть дополнены специальными методами и методиками, которые условно можно разделить на три группы.

Первая группа специальных методов, предназначенная для прогнозирования показателей надежности деталей, включает вероятностно-статистические модели (ВСМ), основанные на феноменологических явлениях и гипотезах (расчеты на износ, усталость прочность и т, д.). Однако, как показал анализ (см. п, 1.2.), применение этих моделей для прогнозирования ПН требует со-ответствующей систематизации и классификации, а также накопления и обобщения опыта прогнозных расчетов применительно к конкретным деталям с целью повышения их достоверности и точности.

Ко второй группе следует отнести методы, являющиеся обобщением экстраполяционных и статистических методов и отражающие специфику эксплуатационных отказов, в частности корреляционные уравнения долговечности (КУД) для деталей шасси автомобиля . Очевидно, отдельные разработки по КУД должны быть формализованы в виде соответствующей методики.

Третью группу специальных методов, предназначенных для прогнозирования показателей надежности сборочных единиц, агрегатов, изделия в целом, составляют структурно-функциональные модели (СФМ), которые в общем случае отражают взаимосвязь и взаимовлияния отдельных деталей на протекание разрушительных процессов, приводящих к отказам, предельные состояния сопряжений и т. д. В частном случае СФМ может быть построена с учетом показателей надежности деталей, спрогнозированных с помощью общих и специальных методов первой и второй группы. На основании этих прогнозов производится расчет (моделирование) показателей надежности восстанавливаемого объекта. Многовариантность и неопределенность прогноза определяются не только многовариантностью и неопределенностью исходных данных, но и стратегией ремонтов (замен), коррелируемостью отказов и т. д. Отсутствие общей методики прогнозирования ПН с помощью СФМ требует проведения соответствующих исследований.

Введение специальных методов увеличивает число вариантов прогноза ПН, что приводит к усложнению процедуры принятий решений на основе прогнозной информации. Редуцирования числа вариантов можно достигнуть с помощью комбинированного прогноза, методика которого, на наш взгляд, должна быть усовершенствована с учетом разработок, приведенных в , и конкретизирована применительно к ПН.

Дополним классификацию объектов прогноза по масштабности и сложности рассмотренными методами прогнозирования. Из табл. 1.6 видно, что специальные методы находят применение при оценке всех ПН и моделей отказов; использование комбинированных методов приводит к увеличению масштабности и сложности объекта прогноза, но это пока единственный путь повышения точности и достоверности оценок ПН при проектировании.

Заметим, что практическое применение общих и специальных методов прогнозирования становится возможным при наличии конкретных методик расчета, доведенных до соответствующих алгоритмов и программ, и информационной базы, включающей конструктивную документацию и банки данных по изделиям- аналогам о показателях надежности, условиях эксплуатации, испытаниях, нагрузочных режимах, износах, предельных состояниях и т. д. Для конкретных деталей или агрегатов автомобиля речь идет о формировании локальных информационных баз, обобщение которых позволит перейти к единой информационной базе отрасли.

На основе прогнозов ПН производится выбор оптимальных вариантов конструкции и оптимальной стратегии технического обслуживания и ремонта; разработка мероприятий по повышению надежности; уточнение параметров и режимов работы; планирование выпуска запасных частей, т. е. фактически осуществляется управление надежностью. Следовательно, прогнозная (априорная) информация должна использоваться для решений, связанных с управлением надежностью проектируемой конструкции.

Известно , что процесс принятия решений в общем виде характеризуется, во-первых, наличием одной или нескольких целей; во-вторых, разработкой альтернативных вариантов решений; в-третьих, выбором рационального (оптимального) решения, основанного на определенных критериях, с учетом факторов, ограничивающих возможности достижения цели. В зависимости от исходной информации различают задачи принятия решений в условиях определенности, риска и неопределенности. Для решения задач в условиях неопределенности используется теория статистических решений, которая подразделяется на два направления в зависимости от того имеется или отсутствует возможность проведения экспериментов в процессе принятия решений. Очевидно, разработка мероприятий по управлению надежностью на основе прогнозной информации является типичной задачей принятия решений в условиях неопределенности, зависящей от так называемых природных факторов, не известных или известных с недостаточной точностью в момент принятия решения и обусловленная их недостаточной изученностью.

Комплекс теоретических и прикладных вопросов, связанных с управлением надежностью при проектировании, является логическим продолжением и обобщением теории прогнозирования ПН и представляет, на наш взгляд, самостоятельную проблему. Поэтому, в данной работе целесообразно ограничиться рассмотрением некоторых вопросов управления надежностью, непосредственно относящихся к использованию прогнозной (априорной) информации о показателях надежности в процессе принятия решений.