Электронная конфигурация всех атомов. Электронные конфигурации атомов элементов Периодической системы

Электронная конфигурация атома - это формула, показывающая расположение электронов в атоме по уровням и подуровням. После изучения статьи Вы узнаете, где и как располагаются электроны, познакомитесь с квантовыми числами и сможете построить электронную конфигурацию атома по его номеру, в конце статьи приведена таблица элементов.

Для чего изучать электронную конфигурацию элементов?

Атомы как конструктор: есть определённое количество деталей, они отличаются друг от друга, но две детали одного типа абсолютно одинаковы. Но этот конструктор куда интереснее, чем пластмассовый и вот почему. Конфигурация меняется в зависимости от того, кто есть рядом. Например, кислород рядом с водородом может превратиться в воду, рядом с натрием в газ, а находясь рядом с железом вовсе превращает его в ржавчину. Что бы ответить на вопрос почему так происходит и предугадать поведение атома рядом с другим необходимо изучить электронную конфигурацию, о чём и пойдёт речь ниже.

Сколько электронов в атоме?

Атом состоит из ядра и вращающихся вокруг него электронов, ядро состоит из протонов и нейтронов. В нейтральном состоянии у каждого атома количество электронов равно количеству протонов в его ядре. Количество протонов обозначили порядковым номером элемента, например, сера, имеет 16 протонов - 16й элемент периодической системы. Золото имеет 79 протонов - 79й элемент таблицы Менделеева. Соответственно, в сере в нейтральном состоянии 16 электронов, а в золоте 79 электронов.

Где искать электрон?

Наблюдая поведение электрона были выведены определённые закономерности, они описываются квантовыми числами, всего их четыре:

  • Главное квантовое число
  • Орбитальное квантовое число
  • Магнитное квантовое число
  • Спиновое квантовое число

Орбиталь

Далее, вместо слова орбита, мы будем использовать термин "орбиталь", орбиталь - это волновая функция электрона, грубо - это область, в которой электрон проводит 90% времени.
N - уровень
L - оболочка
M l - номер орбитали
M s - первый или второй электрон на орбитали

Орбитальное квантовое число l

В результате исследования электронного облака, обнаружили, что в зависимости от уровня энергии, облако принимает четыре основных формы: шар, гантели и другие две, более сложные. В порядке возрастания энергии, эти формы называются s-,p-,d- и f-оболочкой. На каждой из таких оболочек может располагаться 1 (на s), 3 (на p), 5 (на d) и 7 (на f) орбиталей. Орбитальное квантовое число - это оболочка, на которой находятся орбитали. Орбитальное квантовое число для s,p,d и f-орбиталей соответственно принимает значения 0,1,2 или 3.

На s-оболочке одна орбиталь (L=0) - два электрона
На p-оболочке три орбитали (L=1) - шесть электронов
На d-оболочке пять орбиталей (L=2) - десять электронов
На f-оболочке семь орбиталей (L=3) - четырнадцать электронов

Магнитное квантовое число m l

На p-оболочке находится три орбитали, они обозначаются цифрами от -L, до +L, то есть, для p-оболочки (L=1) существуют орбитали "-1", "0" и "1". Магнитное квантовое число обозначается буквой m l .

Внутри оболочки электронам легче располагаться на разных орбиталях, поэтому первые электроны заполняют по одному на каждую орбиталь, а затем уже к каждому присоединяется его пара.

Рассмотрим d-оболочку:
d-оболочке соответствует значение L=2, то есть пять орбиталей (-2,-1,0,1 и 2), первые пять электронов заполняют оболочку принимая значения M l =-2,M l =-1,M l =0, M l =1,M l =2.

Спиновое квантовое число m s

Спин - это направление вращения электрона вокруг своей оси, направлений два, поэтому спиновое квантовое число имеет два значения: +1/2 и -1/2. На одном энергетическом подуровне могут находиться два электрона только с противоположными спинами. Спиновое квантовое число обозначается m s

Главное квантовое число n

Главное квантовое число - это уровень энергии, на данный момент известны семь энергетических уровней, каждый обозначается арабской цифрой: 1,2,3,...7. Количество оболочек на каждом уровне равно номеру уровня: на первом уровне одна оболочка, на втором две и т.д.

Номер электрона


Итак, любой электрон можно описать четырьмя квантовыми числами, комбинация из этих чисел уникальна для каждой позиции электрона, возьмём первый электрон, самый низкий энергетический уровень это N=1, на первом уровне распологается одна оболочка, первая оболочка на любом уровне имеет форму шара (s-оболочка), т.е. L=0, магнитное квантовое число может принять только одно значение, M l =0 и спин будет равен +1/2. Если мы возьмём пятый электрон (в каком бы атоме он не был), то главные квантовые числа для него будут: N=2, L=1, M=-1, спин 1/2.

Первоначально элементы в Периодической таблице химических элементов Д.И. Менделеева были расположены в соответствии с их атомными массами и химическими свойствами, но на самом деле оказалось, что решающую роль играет не масса атома, а заряд ядра и, соответственно, число электронов в нейтральном атоме.

Наиболее устойчивое состояние электрона в атоме химического элемента соответствует минимуму его энергии, а любое другое состояние называется возбужденным, в нем электрон может самопроизвольно переходить на уровень с более низкой энергией.

Рассмотрим, как распределяются электроны в атоме по орбиталям, т.е. электронную конфигурацию многоэлектронного атома в основном состоянии. Для построения электронной конфигурации пользуются следующими принципами заполнения орбиталей электронами:

— принцип (запрет) Паули – в атоме не может быть двух электронов с одинаковым набором всех 4-х квантовых чисел;

— принцип наименьшей энергии (правила Клечковского) – орбитали заполняют электронами в порядке возрастания энергии орбиталей (рис. 1).

Рис. 1. Распределение орбиталей водородоподобного атома по энергиям; n – главное квантовое число.

Энергия орбитали зависит от суммы (n + l). Орбитали заполняются электронами в порядке возрастания суммы (n + l) для этих ортиталей. Так, для подуровней 3d и 4s суммы (n + l) будут равны 5 и 4, соответственно, вследствие чего, первой будет заполняться 4s орбиталь. Если сумма (n + l) одинакова для двух орбиталей, то первой заполняется орбиталь с меньшим значением n. Так, для 3d и 4p орбиталей сумма (n + l) будет равна 5 для каждой орбитали, но первой заполняется 3d орбиталь. В соответствии с этими правилами порядок заполнения орбиталей будет следующим:

1s<2s<2p<3s<3p<4s<3d<4p<5s<4d<5p<6s<5d<4f<6p<7s<6d<5f<7p

Семейство элемента определяется по орбитали, заполняемой электронами в последнюю очередь, в соответствии с энергией. Однако, нельзя записывать электронные формулы в соответствии с энергетическим рядом.

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 3d 10 4s 2 4p 6 4d 3 5s 2 правильная запись электронной конфигурации

41 Nb 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 4p 6 5s 2 4d 3 неверная запись электронной конфигурации

Для первых пяти d – элементов валентными (т.е., электроны, отвечающие за образование химической связи) являются сумма электронов на d и s, заполненных электронами в последнюю очередь. Для p – элементов валентными являются сумма электронов, находящихся на s и p подуровнях. Для s-элементов валентыми являются электроны, находящиеся на s подуровне внешнего энергетического уровня.

— правило Хунда – при одном значении l электроны заполняют орбитали таким образом, чтобы суммарный спин был максимальным (рис. 2)

Рис. 2. Изменение энергии у 1s -, 2s – 2p – орбиталей атомов 2-го периода Периодической системы.

Примеры построения электронных конфигураций атомов

Примеры построения электронных конфигураций атомов приведены в таблице 1.

Таблица 1. Примеры построения электронных конфигураций атомов

Электронная конфигурация

Применяемые правила

Принцип Паули, правила Клечковского

Правило Хунда

1s 2 2s 2 2p 6 4s 1

Правила Клечковского

Символ Льюиса: Электронная диаграмма: Единственный электрон атома водорода может принимать участие в образовании только одной химической связи с другими атомами: Количество ковалентных связей , которые образует атом в данном соединении, характеризует его валентность . Во всех соединениях атом водорода одновалентен. Гелий Гелий, как и водород, - элемент первого периода. В своём единственном квантовом слое он имеет одну s -орбиталь, на которой находится два электрона с антипараллельными спинами (неподелённая электронная пара). Символ Льюиса: Не: . Электронная конфигурация 1s 2, её графическое изображение: В атоме гелия нет неспаренных электронов, нет свободных орбиталей. Его энергетический уровень является завершённым. Атомы с завершённым квантовым слоем не могут образовывать химических связей с другими атомами. Они называются благородными или инертными газами . Гелий - их первый представитель. ВТОРОЙ ПЕРИОД Литий Атомы всех элементов второго периода имеют два энергетических уровня. Внутренний квантовый слой - это завершённый энергетический уровень атома гелия. Как было показано выше, его конфигурация выглядит как 1s 2, но для её изображения может быть также использована и сокращённая запись: . В некоторых литературных источниках её обозначают [К] (по наименованию первой электронной оболочки). Второй квантовый слой лития содержит четыре орбитали (22 = 4): одну s и три р. Электронная конфигурация атома лития: 1s 22s 1 или 2s 1. C помощью последней записи выделяются только электроны внешнего квантового слоя (валентные электроны). Символ Льюиса для лития - Li . Графическое изображение электронной конфигурации:
Бериллий Электронная конфигурация - 2s2. Электронная диаграмма внешнего квантового слоя:
Бор Электронная конфигурация - 2s22р1. Атом бора может переходить в возбуждённое состояние. Электронная диаграмма внешнего квантового слоя:


В возбуждённом состоянии атом бора имеет три неспаренных электрона и может образовать три химических связи: ВF3, B2O3. При этом у атома бора остаётся свободная орбиталь, которая может участвовать в образовании связи по донорно-акцепторному механизму. Углерод Электронная конфигурация - 2s22р2. Электронные диаграммы внешнего квантового слоя атома углерода в основном и возбуждённом состояниях:

Невозбуждённый атом углерода может образовать две ковалентных связи за счёт спаривания электронов и одну - по донорно-акцепторному механизму. Примером такого соединения является оксид углерода (II), который имеет формулу СО и называется угарным газом. Подробнее его строение будет рассмотрено в разделе 2.1.2. Возбуждённый атом углерода уникален: все орбитали его внешнего квантового слоя заполнены неспаренными электронами, т.е. число валентных орбиталей и валентных электронов у него одинаково. Идеальным партнёром для него является атом водорода, у которого на единственной орбитали находится один электрон. Этим объясняется их способность к образованию углеводородов. Имея четыре неспаренных электрона, атом углерода образует четыре химических связи: СН4, СF4, СО2. В молекулах органических соединений атом углерода всегда находится в возбуждённом состоянии:
Атом азота не может возбуждаться, т.к. в его внешнем квантовом слое нет свободной орбитали. Он образует три ковалентных связи за счёт спаривания электронов:
Имея два неспаренных электрона во внешем слое, атом кислорода образует две ковалентных связи:
Неон Электронная конфигурация - 2s22р6. Символ Льюиса: Электронная диаграмма внешнего квантового слоя:


Атом неона имеет завершённый внешний энергетический уровень и не образует химических связей ни с какими атомами. Это второй благородный газ. ТРЕТИЙ ПЕРИОД Атомы всех элементов третьего периода имеют три квантовых слоя. Электронную конфигурацию двух внутренних энергетических уровней можно изображать как . Внешний электронный слой содержит девять орбиталей, которые заселяются электронами, подчиняясь общим закономерностям. Так, для атома натрия электронная конфигурация имеет вид: 3s1, для кальция - 3s2 (в возбуждённом состоянии - 3s13р1), для алюминия - 3s23р1 (в возбуждённом состоянии - 3s13р2). В отличие от элементов второго периода, атомы элементов V – VII групп третьего периода могут существовать как в основном, так и в возбуждённом состояниях. Фосфор Фосфор является элементом пятой группы. Его электронная конфигурация - 3s23р3. Подобно азоту, он имеет три неспаренных электрона на внешнем энергетическом уровне и образует три ковалентных связи. Примером является фосфин, имеющий формулу РН3 (сравните с аммиаком). Но фосфор, в отличие от азота, во внешнем квантовом слое содержит свободные d-орбитали и может переходить в возбуждённое состояние - 3s13р3d1:

Это даёт ему возможность образовать пять ковалентных связей в таких, например, соединениях как Р2О5 и Н3РО4.

Сера Электронная конфигурация основного состояния - 3s23p4. Электронная диаграмма:
Однако он может возбуждаться, переводя электрон вначале с р - на d -орбиталь (первое возбуждённое состояние), а затем с s - на d -орбиталь (второе возбуждённое состояние):

В первом возбуждённом состоянии атом серы образует четыре химических связи в таких соединениях как SО2 и H2SO3. Второе возбуждённое состояние атома серы можно изобразить с помощью электронной диаграммы:

Такой атом серы образует шесть химических связей в соединениях SO3 и H2SO4.

1.3.3. Электронные конфигурации атомов элементов больших периодов ЧЕТВЁРТЫЙ ПЕРИОД

Начинается период с калия (19K) электронная конфигурация: 1s22s22p63s23p64s1 или 4s1 и кальция (20Ca): 1s22s22p63s23p64s2 или 4s2. Таким образом, в соответствии с правилом Клечковского, после р-орбиталей Ar заполняется внешний 4s-подуровнь, который обладает меньшей энергией, т.к. 4s-орбиталь проникает ближе к ядру; 3d-подуровень остается незаполненным (3d0). Начиная от скандия, у 10 элементов происходит заселение орбиталей 3d-подуровня. Они называются d-элементами.


В соответствии с принципом последовательного заполнения орбиталей, у атома хрома электронная конфигурация должна быть 4s23d4, однако у него наблюдается «проскок» электрона, заключающийся в переходе 4s-элекрона на близкую по энергии 3d-орбиталь (рис. 11).



Экспериментально установлено, что состояния атома, при которых p-, d-, f-орбитали заполнены наполовину (p3, d5, f7), полностью (p6, d10, f14) или свободны (p0, d0, f0), обладают повышенной устойчивостью. Поэтому если атому до полузавершения или завершения подуровня не хватает одного электрона, наблюдается его «проскок» с ранее заполненной орбитали (в данном случае - 4s).

За исключением Cr и Cu, все элементы от Ca до Zn имеют одинаковое количество электронов на внешнем уровне – два. Этим объясняется относительно небольшое изменение свойств в ряду переходных металов. Тем не менее, для перечисленных элементов валентными являются как 4s-электроны внешнего, так и 3d-электроны предвнешнего подуровня (за исключением атома цинка, у которого третий энергетический уровень полностью завершён).

31Ga 4s23d104p1 32Ge 4s23d104p2 33As 4s23d104p3

34Se 4s23d104p4 35Br 4s23d104p5 36Kr 4s23d104p6


Свободными остались 4d и 4f орбитали, хотя четвертый период завершен.

ПЯТЫЙ ПЕРИОД

Последовательность заполнения орбиталей та же, что и в предыдущем периоде: сначала заполняется 5s-орбиталь (37Rb 5s1), затем 4d и 5p (54Xe 5s24d105p6). Орбитали 5s и 4d ещё более близки по энергии, поэтому у большинства 4d-элементов (Mo, Tc, Ru, Rh, Pd, Ag) наблюдается переход электрона с 5s на 4d-подуровень.

ШЕСТОЙ И СЕДЬМОЙ ПЕРИОДЫ

В отличие от предыдущего шестой период включает 32 элемента. Цезий и барий – это 6s-элементы. Следующие энергетически выгодные состояния это 6p, 4f и 5d. Вопреки правилу Клечковского, у лантана заполняется не 4f а 5d-орбиталь (57La 6s25d1), однако у следующих за ним элементов происходит заполнение 4f-подуровня (58Ce 6s24f2), на котором четырнадцать возможных электронных состояний. Атомы от церия (Се) до лютеция (Lu) называются лантаноидами – это f-элементы. В ряду лантаноидов, иногда происходит «проскок» электрона, так же как в ряду d-элементов. Когда 4f-подуровень оказывается завершенным, продолжает заполняться 5d-подуровень (девять элементов) и завершают шестой период, как и любой другой, кроме первого, шесть р-элементов.

Первые два s-элемента в седьмом периоде – это франций и радий, за ними следует один 6d-элемент – актиний (89Ac 7s26d1). За актинием следует четырнадцать 5f-элементов – актиноидов. За актиноидами должны следовать девять 6d-элементов и завершать период должны шесть р-элементов. Седьмой период является незавершенным.

Рассмотренная закономерность формирования периодов системы элементами и заполнения атомных орбиталей электронами показывает периодическую зависимость электронных структур атомов от заряда ядра.

Период – это совокупность элементов, расположенных в порядке возрастания зарядов ядер атомов и характеризующихся одинаковым значением главного квантового числа внешних электронов. В начале периода заполняются ns -, а в конце – np -орбитали (кроме первого периода). Эти элементы образуют восемь главных (А) подгрупп периодической системы Д.И. Менделеева.

Главная подгруппа – это совокупность химических элементов, расположенных по вертикали и имеющих одинаковое число электронов на внешнем энергетическом уровне.

В пределах периода с увеличением заряда ядра и возрастающей силы притяжения к нему внешних электронов слева направо уменьшаются радиусы атомов, что в свою очередь обусловливает ослабление металлических и возрастание неметаллических свойств. За атомный радиус принимают теоретически рассчитанное расстояние от ядра до максимума электронной плотности внешнего квантового слоя. В группах сверху вниз увеличивается число энергетических уровней, а, следовательно, и атомный радиус. При этом металлические свойства усиливаются. К важным свойствам атомов, которые изменяются периодически в зависимости от зарядов ядер атомов, также относятся энергия ионизации и сродство к электрону, которые будут рассмотрены в разделе 2.2.

Задача 1 . Напишите электронные конфигурации следующих элементов: N , Si , F е, Кr , Те, W .

Решение. Энергия атомных орбиталей увеличивается в следующем порядке:

1s 2s 2p 3s 3p 4s 3d 4p 5s 4d 5p 6s 4f 5d 6p 7s 5f 6d .

На каждой s -оболочке (одна орбиталь) может находиться не более двух электронов, на p -оболочке (три орбитали) - не более шести, на d -оболочке (пять орбиталей) - не более 10 и на f -оболочке (семь орбиталей) - не более 14.

В основном состоянии атома электроны занимают орбитали с наименьшей энергией. Число электронов равно заряду ядра (атом в целом нейтрален) и порядковому номеру элемента. Например, в атоме азота - 7 электронов, два из которых находятся на 1s -орбитали, два - на 2s -орбитали, и оставшиеся три электрона - на 2p -орбиталях. Электронная конфигурация атома азота:

7 N : 1s 2 2s 2 2p 3 . Электронные конфигурации остальных элементов:

14 Si: 1s 2 2s 2 2p 6 3s 2 3p 2 ,

26 F е: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 6 ,

36 Кr: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 ,

52 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 4 ,

74 Те: 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 3d 10 3p 6 5s 2 4d 10 5p 6 6s 2 4f 14 5d 4 .

Задача 2 . Какой инертный газ и ионы каких элементов имеют одинаковую электронную конфигурацию с частицей, возникающей в результате удаления из атома кальция всех валентных электронов?

Решение. Электронная оболочка атома кальция имеет струк­туру 1s 2 2s 2 2p 6 3s 2 3p 6 4s 2 . При удалении двух валентных электронов образуется ион Са 2+ с конфигурацией 1s 2 2s 2 2р 6 Зs 2 Зр 6 . Такую же электронную конфигурацию имеют атом Ar и ионы S 2- , Сl — , К + , Sc 3+ и др.

Задача 3 . Могут ли электроны иона Аl 3+ находиться на следующих орбиталях: а) 2р; б) 1р; в) 3d ?

Решение. Электронная конфигурация атома алюминия: 1s 2 2s 2 2p 6 3s 2 3p 1 . Ион Al 3+ образуется при удалении трех валентных электронов из атома алюминия и имеет электронную конфи­гурацию 1s 2 2s 2 2p 6 .

а) на 2р-орбитали электроны уже находятся;

б) в соответствии с ограничениями, накладываемыми на квантовое число l (l = 0, 1,…n -1), при n = 1 возможно только значение l = 0, следовательно, 1p -орбиталь не существует;

в) на Зd -орбитали электроны могут находиться, если ион - в возбужденном состоянии.

Задача 4. Напишите электронную конфигурацию атома неона в первом возбужденном состоянии.

Решение. Электронная конфигурация атома неона в основном состоянии – 1s 2 2s 2 2p 6 . Первое возбужденное состояние получается при переходе одного электрона с высшей занятой орбитам (2р) на низшую свободную орбиталь (3s ). Электронная конфигурация атома неона в первом возбужденном состоянии – 1s 2 2s 2 2p 5 3s 1 .

Задача 5 . Каков состав ядер изотопов 12 C и 13 C , 14 N и 15 N ?

Решение. Число протонов в ядре равно порядковому номеру элемента и одинаково для всех изотопов данного элемента. Число нейтронов равно массовому числу (указываемому слева вверху от номера элемента) за вычетом числа протонов. Разные изотопы одного и того же элемента имеют разные числа нейтронов.

Состав указанных ядер:

12 С: 6р + 6n ; 13 С: 6р + 7n ; 14 N : 7p + 7n ; 15 N : 7p + 8n .

Электронная конфигурация химических элементов - это отслеживание месторасположения электронов в его атомах. Электроны могут находиться в оболочках, подоболочках и на орбиталях. От распределения электронов зависит валентность элемента, его химическая активность и способность вступать во взаимодействие с другими веществами.

Как записывается электронная конфигурация

Расположение атомов обычно записывается для тех частиц химических элементов, которые находятся в основном состоянии. Если атом возбужден, запись будет называться возбужденной конфигурацией. Определение электронной конфигурации, применимой в том или ином случае, зависит от трех правил, которые справедливы для атомов всех химических элементов.

Принцип заполнения

Электронная конфигурация атома должна соответствовать принципу заполнения, согласно которому электроны атомов заполняют орбитали по возрастающей - от низшего энергетического уровня к высшему. Низшие орбитали любого атома всегда заполняются в первую очередь. Потом электроны заполняют существующие орбитали второго энергетического уровня, затем орбиталь s, а лишь в конце - орбиталь p-подуровня.

На письме электронная конфигурация химических элементов передается формулой, в которой рядом с наименованием элемента указывают комбинацию чисел и литер, соответствующую положению электронов. Верхний показатель обозначает количество электронов на данных орбиталях.

Например, атом водорода обладает единственным электроном. Согласно принципу заполнения, этот электрон находится на s-орбитали. Таким образом, электронная конфигурация водорода будет равна 1s1.

Принцип запрета Паули

Второе правило заполнения орбиталей является частным случаем более обобщенного закона, который открыл швейцарский физик Ф. Паули. Согласно этому правилу, в любом химическом элементе нет пары электронов, имеющих одинаковый набор квантовых чисел. Поэтому на любой орбитали одновременно могу находиться не более двух электронов, и то лишь только в случае, если они имеют неодинаковые спины.

Принцип запрета Паули может быть рассмотрен на конкретном примере. Электронная конфигурация атома бериллия может быть записана, как 1s 2 2s 2 . При попадании в атом кванта энергии атом переходит в возбужденное состояние. Это может быть записано так:

1s 2 2s 2 (обычное состояние) + → 1s 2 2s 1 2p 1 (возбужденное состояние).

Если сравнить электронные конфигурации бериллия в обычном и возбужденном состоянии, можно заметить, что число неспаренных электронов у них неодинаковое. Электронная конфигурация бериллия показывает отсутствие неспаренных электронов в обычном состоянии. После попадания в атом кванта энергии появляются два неспаренных электрона.

В принципе, в любом химическом элементе электроны могут переходить на орбитали с более высокими энергиями, но для химии представляют интерес лишь те переходы, которые осуществляются между подуровнями с близкими значениями энергий.

Объяснить эту закономерность можно следующим образом. Образование химической связи всегда сопровождается выделением энергии, потому что атомы переходят в энергетически выгодное состояние. Распаривание электронов на одном энергетическом уровне несет в себе такие затраты энергии, какие вполне компенсируются после образования химической связи. Энергетические затраты на распаривание электронов разных химических уровней оказываются настолько велики, что химическая связь не в состоянии их компенсировать. Если нет химического партнера, возбужденный атом выделяет квант энергии и возвращается в нормальное состояние - этот процесс ученые называют релаксацией.

Правило Гунда

Электронная конфигурация атома подчиняется закону Гунда, согласно которому заполнение орбиталей одной подоболочки начинается электронами, имеющими одинаковый спин. Лишь после того, как все одиночные электроны займут установленные орбитали, к ним присоединяются заряженные частички с противоположным спином.

Правило Гунда наглядно подтверждает электронная конфигурация азота. Атом азота имеет 7 электронов. Электронная конфигурация этого химического элемента выглядит так: ls22s22p3. Все три электрона, которые располагаются на 2р-подоболочке, должны находиться поодиночке, занимая каждую из трех 2-р орбиталей, и все спины при этом у них должны быть параллельны.

Эти правила помогают не только понять, чем обусловлена электронная конфигурация элементов периодической системы, но и понять процессы, происходящие внутри атомов.